This study’s aim was to evaluate the genetic diversity of European plum (Prunus domestica) cultivars and hybrids in Lithuania using SSR markers. In total, 107 plum genotypes (including 68 European plum cultivars and 39 hybrids) from the genetic resources collection of the Institute of Horticulture of the Lithuanian Research Centre for Agriculture and Forestry (LRCAF IH) were evaluated using nine microsatellite markers (SSRs) previously published and suggested by the European Cooperative Programme for Plant Genetic Resources (ECPGR). Up to six alleles per locus with each primer pair were generated for some genotypes due to the hexaploidy of plums. The number of alleles in each primer ranged from 18 to 30, with an average of 24.33. The highest number of alleles was generated with the PacA33 primer pair (30). The most informative primer, according to the PIC value, was BPPCT007. Sixty-two unique alleles (representing 39.5% of all polymorphic alleles) have been detected in the plum germplasm developed in Lithuania. According to UPGMA cluster analysis, 58 European plum genotypes were separated into eight groups without any relation to fruit color or shape. By genetic diversity (UPGMA) and structure (Bayesian) analysis, European plum hybrids were grouped into clusters according to their pedigree.
Brown rot caused by Monilinia spp. fungi causes substantial losses in stone and pome fruit production. Reports suggest that up to 90% of the harvest could be lost. This constitutes an important worldwide issue in the food chain that cannot be solved by the use of chemical fungicides alone. Biocontrol agents (BCAs) based on microorganisms are considered a potential alternative to chemical fungicides. We hypothesized that endophytic bacteria from Prunus domestica could exhibit antagonistic properties towards Monilinia fructigena, one of the main causative agents of brown rot. Among the bacteria isolated from vegetative buds, eight isolates showed antagonistic activity against M. fructigena, including three Pseudomonas spp. isolates that demonstrated 34% to 90% inhibition of the pathogen’s growth when cultivated on two different media in vitro. As the stimulation of plant growth could contribute to the disease-suppressing activity of the potential BCAs, plant growth promoting traits (PGPTs) were assessed for bacterial isolates with M. fructigena-suppressing activity. While all isolates were capable of producing siderophores and indole-3-acetic acid (IAA), fixating nitrogen, mineralizing organic phosphate, and solubilizing inorganic phosphate and potassium, only the Pseudomonas spp. isolates showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Overall, our study paves the way for the development of an eco-friendly strategy for managing M. fructigena pathogens by using BCAs including Pseudomonas spp. bacteria, which could also serve as growth stimulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.