Bluetooth Low Energy (BLE) is one of the RF-based technologies that has been utilizing Received Signal Strength Indicators (RSSI) in indoor position location systems (IPS) for decades. Its recent signal stability and propagation distance improvement inspired us to conduct this project. Beacons and scanners used two Bluetooth specifications, BLE 5.0 and 4.2, for experimentations. The measurement paradigm consisted of three segments, RSSI–distance conversion, multi-beacon in-plane, and diverse directional measurement. The analysis methods applied to process the data for precise positioning included the Signal propagation model, Trilateration, Modification coefficient, and Kalman filter. As the experiment results showed, the positioning accuracy could reach 10 cm when the beacons and scanners were at the same horizontal plane in a less-noisy environment. Nevertheless, the positioning accuracy dropped to a meter-scale accuracy when the measurements were executed in a three-dimensional configuration and complex environment. According to the analysis results, the BLE wireless signal strength is susceptible to interference in the manufacturing environment but still workable on certain occasions. In addition, the Bluetooth 5.0 specifications seem more promising in bringing brightness to RTLS applications in the future, due to its higher signal stability and better performance in lower interference environments.
At the National Ignition Facility (NIF), storage phosphor image plates (IP) are used extensively for recording x-rays, charged particles, and neutrons. For x-ray imaging and spectroscopy, absolute and relative calibrations are important for extracting plasma information from the diagnostics. We use Fuji MS, SR, and TR image plates that have been cut to fit custom diagnostic envelopes. The image plates are scanned on a General Electric FLA 7000 IP flying spot scanner. Calibrations for sensitivity, spatial scale, and temperature dependent fade are applied. During a set of recent calibrations, we noticed large shifts in the absolute calibration of the image plate system. The possible source of these shifts is discussed. We discuss scanner stability and a method for calibration. We discuss the fade and temperature effects of the image plates and how this correction is applied within the NIF environment. We also compare our NIF GE FLA 7000 IP scanner with a new General Electric Amersham Typhoon IP scanner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.