Building accurate movement decoding models from brain signals is crucial for many biomedical applications. Predicting specific movement features, such as speed and force, before movement execution may provide additional useful information at the expense of increasing the complexity of the decoding problem. Recent attempts to predict movement speed and force from the electroencephalogram (EEG) achieved classification accuracies at or slightly above chance levels, highlighting the need for more accurate prediction strategies. Thus, the aims of this study were to accurately predict hand movement speed and force from single‐trial EEG signals and to decode neurophysiological information of motor preparation from the prediction strategies. To these ends, a decoding model based on convolutional neural networks (ConvNets) was implemented and compared against other state‐of‐the‐art prediction strategies, such as support vector machines and decision trees. ConvNets outperformed the other prediction strategies, achieving an overall accuracy of 84% in the classification of two different levels of speed and force (four‐class classification) from pre‐movement single‐trial EEG (100 ms and up to 1,600 ms prior to movement execution). Furthermore, an analysis of the ConvNet architectures suggests that the network performs a complex spatiotemporal integration of EEG data to optimize classification accuracy. These results show that movement speed and force can be accurately predicted from single‐trial EEG, and that the prediction strategies may provide useful neurophysiological information about motor preparation.
Building accurate movement decoding models from brain signals is crucial for many biomedical applications. Decoding specific movement features, such as speed and force, may provide additional useful information at the expense of increasing the complexity of the decoding problem. Recent attempts to predict movement speed and force from the electroencephalogram (EEG) achieved classification accuracy levels not better than chance, stressing the demand for more accurate prediction strategies. Thus, the aim of this study was to improve the prediction accuracy of hand movement speed and force from single-trial EEG signals recorded from healthy volunteers. A strategy based on convolutional neural networks (ConvNets) was tested, since it has previously shown good performance in the classification of EEG signals. ConvNets achieved an overall accuracy of 84% in the classification of two different levels of speed and force (4class classification) from single-trial EEG. These results represent a substantial improvement over previously reported results, suggesting that hand movement speed and force can be accurately predicted from single-trial EEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.