Summary Mutually exclusive activating mutations in the GNAQ and GNA11 oncogenes, encoding heterotrimeric Gαq family members, have been identified in ~83% and ~6% of uveal and skin melanomas, respectively. However, the molecular events underlying these GNAQ-driven malignancies are not yet defined, thus limiting the ability to develop cancer-targeted therapies. Here, we focused on the transcriptional co-activator YAP, a critical component of the Hippo signaling pathway that controls organ size. We found that Gαq stimulates YAP through a Trio-Rho/Rac signaling circuitry promoting actin polymerization, independently of PLCβ and the canonical Hippo pathway. Furthermore, we show that Gαq promotes the YAP-dependent growth of uveal melanoma cells, thereby identifying YAP as a suitable therapeutic target in uveal melanoma, the first described GNAQ/GNA11-initiated human malignancy.
SUMMARY The integrity of the epidermis and mucosal epithelia is highly dependent on resident self-renewing stem cells, which makes them vulnerable to physical and chemical insults compromising the repopulating capacity of the epithelial stem cell compartment. This is frequently the case in cancer patients receiving radiation or chemotherapy, many of whom develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Here, we show that inhibiting the mammalian target of rapamycin (mTOR) with rapamycin increases the clonogenic capacity of primary human oral keratinocytes and their resident self-renewing cells by preventing stem cell senescence. This protective effect of rapamycin is mediated by the increase expression of mitochondrial superoxide dismutase (MnSOD), and the consequent inhibition of ROS formation and oxidative stress. mTOR inhibition also protects from the loss of proliferative basal epithelial stem cells upon ionizing radiation in vivo, thereby preserving the integrity of the oral mucosa and protecting from radiation-induced mucositis.
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.