Positive trends in annual rainfall in the La Plata Basin (LPB), south of 20°S observed in the last four decades of the twentieth century were not reversed and became more statistically significant when calculated until 2005. These trends were part of a more general change in the monthly precipitation distribution including extreme precipitation.Precipitation in dry and extremely dry months (below the 35th percentile) has been decreasing in the whole LPB region south of 22°S. On the contrary, precipitation in the above normal (between the 65th and 90th percentile) and the extremely high rainfall (above the 90th percentile) ranges has been increasing accounting for most of the annual precipitation trends. More than a steady trend, there has been an abrupt change in extreme monthly precipitation concentrated between 1977 and 1983.The analysis of intensity and frequency of extreme events was done fitting Generalized Extreme Values (GEV) and Poisson distributions. Each distribution was fitted with and without trends in the location parameter and tested to determine the best fit in each case. The regions where GEV with a positive trend was the best fit coincide with areas affected by extensive floods during the last decades. Spatially aggregated results highlight the signal of change towards higher maximum monthly precipitations for a wide span of return periods.The atmospheric circulation associated with cases where extreme monthly precipitation was observed in most of the stations was studied through the integrated water vapour transport in the lower troposphere and its associated divergence. During warm months, an intense northern low-level water vapour flow with two convergence nuclei, one over eastern Argentina, southern Brazil and Uruguay, and the other over western Argentina, along with a weakened south Atlantic Convergence Zone was associated with the more extreme precipitation months favouring the occurrence of Mesoscale Convective Systems.
Southern South America (SSA), considered as the continental region south of 20°S, has experienced significant precipitation variability and trends in the last decades. This article uses monthly quality‐controlled precipitation data from rainfall stations with continuous observations during at least 100 years to quantify long‐term trends as well as interannual‐to‐centennial variability. Several statistical methods are applied to the data, primarily to detect jumps and look for changes due to relocation of the gauge stations, as well as to identify significant trends. Most of the regions have registered an increase in annual rainfall, largely attributable to changes in the warm season. On the other hand, during winter most stations in Argentina and Brazil do not have significant trends, although eastern Patagonia registered an increase in precipitation and Chile, a marked decrease in rainfall. In order to look into the physical mechanisms behind the observed variability, the changes in mean sea level pressure and precipitable water are quantified for different sub‐periods. Also explored is the variability related to the Hadley cell width and strength over the region around SSA. Results show that the Hadley cell has shrunk and shifted towards the equator in winter over the area, which has caused an enhancement of the sinking motion over much of Argentina, Chile and Brazil, while likely increasing the baroclinicity (and associated precipitation) over Patagonia. In summer, the strength of the subsidence decreased and this was associated with an increase of the low‐level moisture advection, favouring more rainfall. The observational evidence presented here suggests that the zonal asymmetry in the change of the Hadley cell position over SSA could be linked to the presence of the Andes Cordillera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.