Despite the prevalence of craniofacial disorders, the genetic contribution remains poorly understood. Class III malocclusion represents a specific craniofacial problem that can be handicapping, both functionally and socially. We hypothesized that the Class III phenotype is genetically linked to specific loci that regulate maxillary or mandibular growth. To determine the region linked to the Class III phenotype in four Hispanic families, we performed a genome-wide scan and linkage analysis using 500 microsatellite markers. Pedigree and linkage analyses revealed that the Class III phenotype (primarily maxillary deficiency) segregates in an autosomal-dominant manner, and that 5 loci (1p22.1, 3q26.2, 11q22, 12q13.13, and 12q23) are suggestive of linkage. Candidate genes within the 12q23 region (ZLR=2.93) include IGF1, HOXC, and COL2A1. Chromosome 1 results (ZLR=2.92) were similar to those reported previously in an Asian cohort with mandibular prognathism, suggesting that a common upstream genetic element may be responsible for both mandibular prognathism and maxillary deficiency.
The metabolite 2-methoxyestradiol (2ME) is an endogenous estrogen metabolite with potential therapeutic properties in reproductive cancers. However, the molecular mechanisms by which 2ME exerts its anticancer activity are not well elucidated. The purpose of this study was to determine the molecular signals associated with the apoptotic effects of 2ME in a human endometrial cancer cell line. Ishikawa cells were treated with non-apoptotic (0.1 µM) or apoptotic concentrations (5 µM) of 2ME, and 12 hours later mRNA levels for Scd2, Snx6, and Spon1 were determined by real-time PCR. We then investigated by immunofluorescence and Western blot the expression and distribution of F-spondin, encoded by Spon1, in Ishikawa cells treated with 2ME 5 µM at 6, 12, or 24 h after treatment. The role of estrogen receptors (ER) in the effect of 2ME on the Spon1 level was also investigated. Finally, we examined whether 2ME 5 µM induces cell death in Ishikawa cells pre-incubated with a neutralizing F-spondin antibody. Non-apoptotic or apoptotic concentrations of 2ME decreased Scd2 and increased Snx6. However, Spon1 was only increased with the 2ME apoptotic concentration. F-spondin protein was also increased at 12 and 24 h after 2ME treatment, while 2ME-induced Spon1 increase was independent of ER. Neutralization of F-spondin blocked the effect of 2ME on the cell viability. These results show that F-spondin signaling is one of the components in the apoptotic effects of 2ME on Ishikawa cells and provide experimental evidence underlying the mechanism of action of this estrogen metabolite on cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.