A multicommutated flow system was designed and evaluated for the determination of selenium by hydride generation atomic absorption spectrometry (HG-AAS). It was applied to the determination of total selenium in samples of cow's milk (fluid and powder) and infant formulae. Linearity was satisfactory in the range up to 27.5 mg L À1 (h ¼ 0.082 C + 0.0033, h ¼ peak-height, absorbance, C ¼ concentration in mg L À1 , r 2 ¼ 0.999). Detection (3s) and quantification (10s) limits in solution were LD ¼ 0.08 mg L À1 and LQ ¼ 0.27 mg L À1 , corresponding to LD ¼ 3.2 mg kg À1 and LQ ¼ 10.8 mg kg À1 in solid samples, and to LD ¼ 0.8 mg L À1 , LQ ¼ 2.7 mg L À1 in fluid milk samples. Trueness was verified by analysis (n ¼ 5) of two reference materials (NIST 1549, Non-fat Milk Powder and NIST 1846 Infant Formula). At the 95% significance level, results were statistically equivalent to the certified values. Instrumental precision (s r (%), n ¼ 5) was in the range 1.4% to 11.7%, analytical precision (s r (%), n ¼ 5) being 4.2 and 9.3% respectively for the determination of the above mentioned reference materials. The sampling frequency of the system was 160 hour À1 .
A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.
Elements in human serum serve as important biomarkers and their levels reflect the well-being of an individual. Electrolytes such as sodium (Na) and chloride (Cl) are crucial in maintaining the normal distribution of water, osmotic pressure and electrical neutrality in the body. Trace element such as copper (Cu) plays a part in many oxidation-reduction reactions and metalloenzymes. The majority of selenium (Se) exists as selenoproteins which are cofactors in the glutathione peroxidase activity that protects the body against free radicals. Phosphorus (P) is required for strong bones and teeth. It is also indispensable for growth, maintenance and repair of tissues and cells. The key comparison CCQM-K139: elements in human serum was coordinated by the Health Sciences Authority, Singapore. This comparison aimed to enable participating National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate their competence in the determination of elements (electrolytes and essential elements) in human serum. The five measurands (Na, Cl, Cu, Se and P) selected for this comparison were not covered in the last two comparisons in the clinical area (CCQM-K14 and CCQM-K107) and offered different analytical challenges. Their concentration levels were within the normal biological range. They were also within the range of existing calibration and measurement capability (CMC) claims in the International Bureau of Weights and Measures' Key Comparison Database (BIPM KCDB). Ten institutes participated in the comparison for Na, eight for Cl, eleven for Cu, six for Se and eight for P. For the analysis of Na, Cu, Se and P, most of the participating institutes employed microwave-assisted digestion and acid digestion (with or without heating) sample dissolution. For the analysis of Cl, in addition to the microwave-assisted digestion and acid digestion, a wider variety of techniques were employed. These included matrix separation, alkaline extraction and coulometric titration. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were the two most commonly used instrumental techniques. Other techniques used included ion chromatography (IC), flame atomic absorption spectrometry (FAAS), titration and micro-coulometry. The medians were used as the estimators of Key Comparison Reference Values (KCRVs) for all measurands. The KCRVs (± standard uncertainty) for Na, Cl, Cu, Se and P (in mg/kg) were 3346 (± 14), 3871 (± 22), 1.151 (± 0.007), 0.1292 (± 0.0007) and 125.70 (± 0.35), respectively. The k-factor of 2 was used for the estimation of the expanded uncertainties of the KCRVs. The degree of equivalence and its associated uncertainty were calculated for each submitted result. For the five measurands, most participating institutes were able to demonstrate their capabilities in the determination of elements in human serum. CMC claims based on elements covered in this study may include other elements with similar core competencies, such as zinc (Zn), potassium (K), magnesium (Mg), calcium (Ca) and iron (Fe), in a wide range of biological materials. The measurands should be at similar concentration range and analysed using the same measurement technique(s) applied in this key comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.