The major intention of higher education institutions is to supply quality education to its students. One approach to get maximum level of quality in higher education system is by discovering knowledge for prediction regarding the internal assessment and end semester examination. The projected work intends to approach this objective by taking the advantage of fuzzy inference technique to classify student scores data according to the level of their performance. In this paper, student's performance is evaluated using fuzzy association rule mining that describes Prediction of performance of the students at the end of the semester, on the basis of previous database like Attendance, Midsem Marks, Previous semester marks and Previous Academic Records were collected from the student's previous database, to identify those students which needed individual attention to decrease fail ration and taking suitable action for the next semester examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.