Lignocellulosic biomass has become an emerging feedstock for second-generation bioethanol production. Sugarcane (Saccharum spp. hybrids), a very efficient perennial C4 plant with a high polyploid level and complex genome, is considered a top-notch candidate for biomass production due to its salient features viz. fast growth rate and abilities for high tillering, ratooning, and photosynthesis. Energy cane, an ideal type of sugarcane, has been bred specifically as a biomass crop. In this review, we described (1) biomass potentials of sugarcane and its underlying genetics, (2) challenges associated with biomass improvement such as large and complex genome, narrow gene pool in existing commercial cultivars, long breeding cycle, and non-synchronous flowering, (3) available genetic resources such as germplasm resources, and genomic and cell wall-related databases that facilitate biomass improvement, and (4) mining candidate genes controlling biomass in genomic databases. We extensively reviewed databases for biomass-related genes and their usefulness in biofuel generation. This review provides valuable resources for sugarcane breeders, geneticists, and broad scientific communities involved in bioenergy production.
Soybean (Glycine max L. Merr.) white mold (SWM), caused by Sclerotinia sclerotiorum (Lib) de Barry), is a devastating fungal disease in the Upper Midwest of the United States and southern Canada. Various methods exist to evaluate for SWM resistance and many quantitative trait loci (QTL) with minor effect governing SWM resistance have been identified in prior studies. This study aimed to predict field resistance to SWM using low-cost and efficient greenhouse inoculation methods and to confirm the QTL reported in previous studies. Three related but independent studies were conducted in the field, greenhouse, and laboratory to evaluate for SWM resistance. The first study evaluated 66 soybean plant introductions (PIs) with known field resistance to SWM using the greenhouse drop-mycelium inoculation method. These 66 PIs were significantly (P < 0.043) different for resistance to SWM. However, year was highly significant (P < 0.00001), while PI x year interaction was not significant (P < 0.623). The second study compared plant mortality (PM) of 35 soybean breeding lines or varieties in greenhouse inoculation methods with disease severity index (DSI) in field evaluations. Moderate correlation (r) between PM under drop-mycelium method and DSI in field trials (r = 0.65, p < 0.0001) was obtained. The PM under spray-mycelium was also correlated significantly with DSI from field trials (r = 0.51, p < 0.0018). Likewise, significant correlation (r = 0.62, p < 0.0001) was obtained between PM across greenhouse inoculation methods and DSI across field trials. These findings suggest that greenhouse inoculation methods could predict the field resistance to SWM. The third study attempted to validate 33 QTL reported in prior studies using seven populations that comprised a total of 392 F4 : 6 lines derived from crosses involving a partially resistant cultivar “Skylla,” five partially resistant PIs, and a known susceptible cultivar “E00290.” The estimates of broad-sense heritability (h2) ranged from 0.39 to 0.66 in the populations. Of the seven populations, four had h2 estimates that were significantly different from zero (p < 0.05). Single marker analysis across populations and inoculation methods identified 11 significant SSRs (p < 0.05) corresponding to 10 QTL identified by prior studies. Thus, these five new PIs could be used as new sources of resistant alleles to develop SWM resistant commercial cultivars.
Liriomyza trifolii (Diptera: Agromyzidae) is a leafminer that causes ruinous damage to many leafy vegetables including lettuce (Lactuca sativa L.) by stippling and tunneling the leaves. In this study, a population of 125 F3 families was developed from the intraspecific cross of ‘Valmaine’ (resistant) and ‘Okeechobee’ (susceptible) romaine cultivars for inheritance analysis and molecular mapping of the resistance loci controlling stippling damage. The experiments were conducted in an insectarium (controlled environment). Stippling damage proved to be heritable because the broad-sense heritability (H2) was 0.58. A segregation analysis suggested that a single dominant allele, Sd1 locus, controls resistance against L. trifolii. Furthermore, a quantitative trait loci (QTL) analysis identified one novel QTL, named Stippling on LG5 (qSTP5), flanked by two SNPs that were mapped to a 5.2 cM (8.5 Mb region) interval, explaining over 13% of the total phenotypic variance. Desirable allele for resistance to L. trifolii was derived from resistant cultivar Valmaine. Identification of SNPs closely linked to the QTL responsible for L. trifolii resistance should facilitate plant breeders to develop resistant romaine lettuce cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.