Background: Adequate nutrition is needed to ensure optimum growth and development of infants and young children. Understanding of the risk factors for stunting and severe stunting among children aged less than five years in North Maluku province is important to guide Indonesian government public health planners to develop nutrition programs and interventions in a post conflict area. The purpose of the current study was to assess the prevalence of and the risk factors associated with stunting and severe stunting among children aged less than five years in North Maluku province of Indonesia.
Infections with Streptococcus spp. were observed in Nile tilapia cultured in net cages in Lake Sentani, Papua, Indonesia. Clinical signs included exophthalmia, erratic swimming, ascites in abdominal cavity, and external hemorrhages. Four types of bacterial colonies (SK, K10, P20, and M12) were isolated from the brain, kidney, and eyes. Based on phenotypic and genetic (16S rDNA sequencing) characteristics, the isolates were identified as Streptococcus iniae (SK), Streptococcus agalactiae (K10 and P20) and Lactococcus garvieae (M12). The latter species has not been previously isolated or reported from fish streptococcosis in Indonesia. Intraperitoneal injection of healthy tilapia with the bacterial species caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post injection. Experimental infections and reisolation of the bacteria from morbid and dead fish suggest they are the causative agents of streptococcosis, which rendered high mortality among cage cultured Nile tilapia in Lake Sentani. Our results suggest the need for developing diagnostic tools for accurate identification of the agents of streptococcosis. As tilapia aquaculture continues to expand as a means of food production and livelihood in Indonesia, it becomes crucial to ensure that fish resources are monitored and protected from the adverse effects of infectious diseases.
In this paper we report the results of studies relating to the synthesis of Cobalt Ferrite (CoFe2O4) thin films by a sputtering method. The CoFe2O4 thin film has been prepared onto silicon substrate from the sputtering targets, CoFe. Structural propertiesofthinfilms were characterized byx-ray diffraction and the morphology was characterized by scanning electron microscopy. The growth parameter are: base pressure 2,8 x 10-2 Torr, ratio of Argon:Oxygen flow rate are 100:50 sccm, deposition pressure 5.4 x10-1 Torr, growth temperature 100oC.Nanostructures of the thin film that have been analyzed are crystallite size and micro strain.We obtained the crystallite size of CoFe2O4 thin films for layer thickness of 40 and 48 nm, respectively are: 32 nm and 66 nm, while the micro strain is 8.0 x 10-4 and 10.2 x 10-4.
This study reports on the synthesis, characterization of polystyrene(PS)/CuO-Fe2O3 nanocomposites, and their application as hydrophobic coatings. CuO and Fe2O3 materials were synthesized from natural materials by the milling method. Meanwhile, the PS/CuO-Fe2O3 nanocomposites were synthesized by the sol-gel method. Furthermore, the hydrophobic coating on the glass substrate was made by the spin-coating. To obtain highest value of contact angle, the composition of both CuO and Fe2O3 in nanocomposite as well as calcination temperatures were varied. Sample characterization was conducted using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (Uv-Vis) spectrophotometry analysis. The Sessile drop method was used to determine the contact angle of the layer. The results showed that PS/CuO-Fe2O3 nanocomposite was successfully obtained with a crystal size between 40–52 nm and grain size of 92 nm. In addition to the basic material of composites, hematite and tenorite, the presence of copper ferrite phase was also identified. The CuO-Fe2O3 composition and its large calcination temperature also plays an effective role in the magnitude of the contact angle. The highest value of contact angle obtained was 125.46° at 3:1 composition and calcination temperature of 200 °C. We found that the PS/CuO-Fe2O3 composite was hydrophobic, but the photocatalyst activity was very small at 0.24%.
Fabrication of PVDF films has been making using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of temperature fabrication on electrical properties and crystallite size of PVDF films. The electrical properties like as surface resistivity are discussion focus in this paper. Surface resistivity properties of PVDF can be improved by mechanical treatment on the varying film thickness and the temperature. To obtain the diffraction pattern of sample characterization is performed using X-Ray Diffraction. Crystallite size of PVDF films calculate from broadening pattern of X-Ray Diffraction. Furthermore, from the diffraction pattern calculated β fraction and crystallite size, for calculation to determine the crystallite size of the sample by using the Scherrer equation. Has been obtained an increase piezoelectric properties of PVDF films that characterized by increasing β fraction. Have been obtained β fraction increased from 25.4% up to 44% for temperatures of 130˚C up to 170˚C, respectively. Resistivity value has been obtained at temperature 130˚C up to 170˚C, decreased from 1.23 × 10 4 Ωm up to 0.21 × 10 4 Ωm respectively. From the experimental results and the calculation of crystallite sizes obtained for the samples with temperature 130˚C up to 170˚C respectively are increased from 7.2 nm up to 20.54 nm. These results indicate that mechanical treatment caused increase β fraction and decrease surface resistivity. Increasing temperatures will also increase the size of the crystallite of the sample. This happens because with the increasing temperature causes the higher the degree of crystallization of PVDF film sample is formed, so that the crystallite size also increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.