Several in vitro and in vivo experiments have shown that nanostructured materials, which mimic the nanometer topography of the native tissues, improve biocompatible responses, and result in better tissue integration in medical implants. Understanding various aspects of nanotopography is extremely important for better designs of these devices. In this review paper, recent progress in the fabrication, characterization, biological responses, and application of nanostructured materials are discussed. Specifically, materials such as ceramics and polymers used to manufacture nanostructured surfaces are briefly introduced. Techniques for fabrication and characterization of nanostructured materials are also explored. Cellular responses such as morphology, alignment, adhesion, proliferation, and profiles of gene expression of various cell types after their exposure to nanofeatured materials are particularly reviewed. Finally, the paper briefly discusses some application of nanostructured materials including those in biosensor and tissue engineering fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.