In an attempt to develop photostable and efficient BODIPY (PM) dyes for use in liquid dye lasers, three new congeners of widely used laser dye, PM567, were synthesized and their photophysical properties in various organic solvents, laser performances, and photostabilities in a selected solvent, 1,4-dioxane, have been investigated using a frequency doubled Q-switched (10 Hz) Nd:YAG laser at 532 nm. The results of photostability study in nonpolar 1,4-dioxane revealed the remarkable enhancement in stability of the novel dyes compared to that of PM567 as well as improved laser performances. Cyclic voltammetry study strongly supports the observed enhancement in photostability of the novel dyes compared to that of PM567. The observed properties of the novel dyes in relation to those of PM567 have been rationalized by extensive use of DFT and TD-DFT using the B3LYP/6-31G(d) method of theory.
An efficient protocol for the synthesis of new rhodol derivatives has been developed. The synthesis involves condensation of 2-hydroxy benzophenone derivatives with 1, 3-dihydroxy benzene derivatives in solvents such as ionic liquid (N-methyl-2-pyrrolidonium hydrogen sulfate) and methane sulphonic acid. Both ionic liquid and methane sulphonic acid were found to be promising self-catalyzed solvents to bring out the conversion to form desired rhodols in excellent yields. In N-methyl-2-pyrrolidonium hydrogen sulfate reaction proceeds faster compared to methane sulphonic acid. The new fluorophores are investigated for their photophysical properties in various microenvironments and systematically characterized by means of density functional theory and time dependent density functional theory. Photophysical properties of the new rhodafluors found sensitive towards change in the pH of media and thus can be used as efficient pH sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.