Neurotransmitter release following synaptic vesicle (SV) fusion is the fundamental mechanism for neuronal communication. Synaptic exocytosis is a specialized form of intercellular communication that shares a common SNARE-mediated fusion mechanism with other membrane trafficking pathways. The regulation of synaptic vesicle fusion kinetics and short-term plasticity is critical for rapid encoding and transmission of signals across synapses. Several families of SNARE-binding proteins have evolved to regulate synaptic exocytosis, including Synaptotagmin (SYT) and Complexin (CPX). Here we demonstrate that Drosophila CPX controls evoked fusion occurring via the synchronous and asynchronous pathways. cpx−/− mutants show increased asynchronous release, while CPX overexpression largely eliminates the asynchronous component of fusion. We also find that SYT and CPX co-regulate the kinetics and Ca2+ cooperativity of neurotransmitter release. CPX functions as a positive regulator of release in part by coupling the Ca2+ sensor SYT to the fusion machinery and synchronizing its activity to speed fusion. In contrast, syt−/−; cpx−/− double mutants completely abolish the enhanced spontaneous release observe in cpx−/− mutants alone, indicating CPX acts as a fusion clamp to block premature exocytosis in part by preventing inappropriate activation of the SNARE machinery by SYT. CPX levels also control the size of synaptic vesicle pools, including the immediate releasable pool and the ready releasable pool – key elements of short-term plasticity that define the ability of synapses to sustain responses during burst firing. These observations indicate CPX regulates both spontaneous and evoked fusion by modulating the timing and properties of SYT activation during the synaptic vesicle cycle.
Association of Nwk with SNX16 promotes down-regulation of synaptic growth signaling at the interface between early and recycling endosomes.
Fertility is a highly complex and regulated phenomenon essential for the survival of any species. To identify Drosophila fertility-specific neural networks, we used a GAL4/UAS enhancer trap genetic screen that selectively inactivates groups of neurons. We identified a GAL4 line (bwktqs) that has a female sterile phenotype only when it expresses the tetanus toxin light chain (TeTxLC). These flies lack oviduct contraction, lay almost no eggs, sperm accumulate in the oviducts, and fewer than normal are seen in the storage organs. In insects, two neuroactive substances are important for oviduct contraction: octopamine (OA), a monoamine that inhibits oviduct contraction, and glutamate (Glu), a neurotransmitter that induces contraction. It is known that octopaminergic neurons of the thoracic abdominal ganglion (TAG) modulate oviduct contraction, however, the glutamatergic neurons that innervate the oviduct have not been identified yet and the interaction between these two neuroactive substances is not well understood. Immunostaining experiments revealed that the bwktqs line trapped an octopaminergic neural network that innervates the genital tract. We show that wt like oviduct contraction in TeTxLC-inactivated flies can only be rescued by simultaneous application of Glu and OA suggesting that the abdominal bwktqs neurons are both octopaminergic and glutamatergic, the use of an agonist and an antagonist for Glu receptors as well as their direct visualization confirmed its participation in this phenomenon. Our work provides the first evidence that adult abdominal type II visceral innervations co-express Glu and OA and allows us to re-evaluate the previous model of neuronal network controlling insect oviduct contraction.
Complexins are small α-helical proteins that modulate neurotransmitter release by binding to SNARE complexes during synaptic vesicle exocytosis. They have been found to function as fusion clamps to inhibit spontaneous synaptic vesicle fusion in the absence of Ca2+, while also promoting evoked neurotransmitter release following an action potential. Complexins consist of an N-terminal domain and accessory α-helix that regulate the activating and inhibitory properties of the protein, respectively, and a central α-helix that binds the SNARE complex and is essential for both functions. In addition, Complexins contain a largely unstructured C-terminal domain whose role in synaptic vesicle cycling is poorly defined. Here, we demonstrate that the C-terminus of Drosophila Complexin (DmCpx) regulates localization to synapses and that alternative splicing of the C-terminus can differentially regulate spontaneous and evoked neurotransmitter release. Characterization of the single DmCpx gene by mRNA analysis revealed expression of two alternatively expressed isoforms, DmCpx7A and DmCpx7B, which encode proteins with different C-termini that contain or lack a membrane tethering prenylation domain. The predominant isoform, DmCpx7A, is further modified by RNA editing within this C-terminal region. Functional analysis of the splice isoforms showed that both are similarly localized to synaptic boutons at larval neuromuscular junctions, but have differential effects on the regulation of evoked and spontaneous fusion. These data indicate that the C-terminus of Drosophila Complexin regulates both spontaneous and evoked release though separate mechanisms and that alternative splicing generates isoforms with distinct effects on the two major modes of synaptic vesicle fusion at synapses.
Analogous to synaptotagmin 1, a calcium-sensitive regulator of presynaptic vesicle fusion, synaptotagmin 4 needs both of its calcium-binding sites to regulate synaptic plasticity via postsynaptic retrograde signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.