Leaks are present to some extent in all water-distribution systems. This paper proposes a leakage localisation method based on the pressure measurements and pressure sensitivity analysis of nodes in a network. The sensitivity analysis using analytical tools is not a trivial job in a real network because the huge non-explicit non-linear systems of equations that describe its dynamics. Simulations of the network in presence and absence of leakage may provide an approximation of this sensitivity. This matrix is binarised using a threshold independent of the node. The binary matrix is assumed as a signature matrix for leakages. However, there is a trade-off between the resolution of the leakage isolation procedure and the number of available pressure sensors. In order to maximise the isolability with a reasonable number of sensors, an optimal sensor placement methodology, based on genetic algorithms, is also proposed. These methodologies have been developed for Barcelona Network using PICCOLO simulator. The sensor placement and the leakage detection and localization methodologies are applied to several district management areas (DMA) in simulation and in reality.
This paper deals with the use of optimal control techniques in water distribution networks. An optimal control tool, developed in the context of a European research project is described and the application to the city of Sintra (Portugal) is presented.
The trajectory control problem, defined as making a vehicle follow a pre-established path in space, can be solved by means of trajectory tracking or path following. In the trajectory tracking problem a timed reference position is tracked. The path following approach removes any time dependence of the problem, resulting in many advantages on the control performance and design. An exhaustive review of path following algorithms applied to quadrotor vehicles has been carried out, the most relevant are studied in this paper. Then, four of these algorithms have been implemented and compared in a quadrotor simulation platform: Backstepping and Feedback Linearisation control-oriented algorithms and NLGL and Carrot-Chasing geometric algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.