The dynamic deformation upon stretching of Ni nanowires as those formed in mechanically controllable break junctions is studied. In order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.
An optimization algorithm for planning the motion of a humanoid robot during extravehicular activities is presented in this paper. The algorithm can schedule and plan the movements of the two robotic arms to move the humanoid robot by using the handrails present outside the international space station. The optimization algorithm considers the eventual constraints imposed by the topology of the handrails and calculates the sequence of grasping and non-grasping phases needed to push and pull the robot along the handrails. A low-level controller is also developed and used to track the planned arms and end-effectors trajectories. Numerical simulations assess the applicability of the proposed strategy in three different typical operations that potentially can be performed in an extravehicular activity scenario.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.