IBERSEIS, a 303 km long (20 s) deep seismic reflection profile, was acquired across the Variscan belt in SW Iberian Peninsula. The acquisition parameters were designed to obtain a high‐resolution crustal‐scale image of this orogen. The seismic profile samples three major tectonic terranes: the South Portuguese Zone, the Ossa‐Morena Zone, and the Central Iberian Zone, which were accreted in Late Paleozoic times. These terranes show a distinctive seismic signature, as do the sutures separating them. Late strike‐slip movements through crustal wedges are apparent in the seismic image and have strongly modified the geometry of sutures. The upper crust appears to be decoupled from the lower crust all along the seismic line, but some deformation has been accommodated at deeper levels. A sill‐like structure is imaged in the middle crust as a 1–2 s thick and 175 km long high‐amplitude conspicuous reflective band. It is interpreted as a great intrusion of mafic magma in a midcrustal decollement. Taking into account surface geological data and the revealed crustal architecture, a tectonic evolution is proposed for SW Iberia which includes transpressional collision interacting during Early Carboniferous with a mantle plume. The Moho can be identified along the entire transect as subhorizontal and located at 10 to 11 s, indicating a 30–35 km average crustal thickness. Its seismic signature changes laterally, being very reflective beneath the South Portuguese Zone and the Central Iberian Zone, but discontinuous and diffuse below the Ossa Morena Zone.
This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy.
[1] We present a 3-D shear wave velocity model for the crust and upper mantle of the western Mediterranean from Rayleigh wave tomography. We analyzed the fundamental mode in the 20-167 s period band (6.0-50.0 mHz) from earthquakes recorded by a number of temporary and permanent seismograph arrays. Using the two-plane wave method, we obtained phase velocity dispersion curves that were inverted for an isotropic Vs model that extends from the southern Iberian Massif, across the Gibraltar Arc and the Atlas mountains to the Saharan Craton. The area of the western Mediterranean that we have studied has been the site of complex subduction, slab rollback, and simultaneous compression and extension during African-European convergence since the Oligocene. The shear velocity model shows high velocities beneath the Rif from 65 km depth and beneath the Granada Basin from 70 km depth that extend beneath the Alboran Domain to more than 250 km depth, which we interpret as a near-vertical slab dangling from beneath the western Alboran Sea. The slab appears to be attached to the crust beneath the Rif and possibly beneath the Granada Basin and Sierra Nevada where low shear velocities (3.8 km/s) are mapped to >55 km depth. The attached slab is pulling down the Gibraltar Arc crust, thickening it, and removing the continental margin lithospheric mantle beneath both Iberia and Morocco as it descends into the deeper mantle. Thin lithosphere is indicated by very low upper mantle velocities beneath the Alboran Sea, above and east of the dangling slab and beneath the Cenozoic volcanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.