A methodology for the conformational study of cyclic systems through the statistical analysis of torsion angles is presented. It relies on a combination of different methods based on a probabilistic model which takes into account the topological symmetry of the structures. This methodology is applied to copper complexes double-bridged by phosphate and related ligands. Structures from the Cambridge Structural Database (CSD) are analyzed and the chair, boat-chair and boat conformations are identified as the most frequent conformations. The output of the methodology also provides information about distortions from the ideal conformations, the most frequent being: chair <--> twist-chair, chair <--> twist-boat-chair and boat <--> twist-boat. Molecular mechanics calculations identify these distortions as energetically accessible pathways.
The solid state conformational preferences of ligand 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene (L1) and its 9-methyl derivative (L2) in transition metal complexes have been determined by a probabilistic method using data retrieved from the Cambridge Structural Database. These macrocyclic compounds, as ligands, tend to adopt a preferential conformation (85% of cases). The ring containing the C=N bond adopts a distorted half-chair conformation, the ring defined by both the N-sp(3) shows a distorted envelope conformation, and the remaining ring exhibits a chair conformation. This conformation corresponds to the enantiomer pair R(N5)S(N9)S(P)/S(N5)R(N9)R(P). Molecular mechanics calculations demonstrate that this is a high energy conformation for the organic molecule, far from the energy minimum. Two other enantiomer pairs are observed in experimental structures. The influence of the coordination on the conformation of the organic ligands has been studied by DFT calculations, and a clear correlation with the geometry of the coordination sphere has been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.