Quantitative Risk Assessment (QRA) has become an indispensable tool for the management of landslide hazard and for planning risk mitigation measures. In this paper we present the evaluation of the rockfall risk at the Solà d'Andorra slope (Andorra Principality) before and after the implementation of risk mitigation works, in particular, the construction of protective fences. To calculate the risk level we have (i) identified the potential rockfall release areas, (ii) obtained the volume distribution of the falling rocks, (iii) determined the frequency of the rockfall events, and (iv) performed trajectographic analysis with a 3D numerical model (Eurobloc) that has provided both the expected travel distances and the kinetic energy of the blocks. The risk level at the developed area located at the foot of the rock cliff has been calculated taking into account the nature of the exposed elements and their vulnerability. In the Forat Negre basin, the most dangerous basin of the Solà d'Andorra, the construction of two lines of rockfall protection fences has reduced the annual probability of loss of life for the most exposed person inside the buildings, from 3.8×10 −4 to 9.1×10 −7 and the societal risk from 1.5×10 −2 of annual probability of loss of life to 1.2×10 −5 .
Abstract. The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m 3 ) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000-1:25 000). "Solà d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.