Widely-used 1-D/2-D speckle tracking techniques in elasticity imaging often experience significant speckle decorrelation in applications involving large elevational motion (i.e., out of plane motion). The problem is more pronounced for cardiac strain rate imaging (SRI) since it is very difficult to confine cardiac motion to a single image plane. Here, we present a 3-D correlation-based speckle tracking algorithm. Conceptually, 3-D speckle tracking is just an extension of 2-D phase-sensitive correlation-based speckle tracking. However, due to its high computational cost, optimization schemes, such as dynamic programming, decimation and two-path processing, are introduced to reduce the computational burden. To evaluate the proposed approach, a 3-D bar phantom under uniaxial compression was simulated for benchmark tests. A more sophisticated 3-D simulation of the left ventricle of the heart was also made to test the applicability of 3-D speckle tracking in cardiac SRI. Results from both simulations clearly demonstrated the feasibility of 3-D correlation-based speckle tracking. With the ability to follow 3-D speckle in 3-D space, 3-D speckle tracking outperforms lower-dimensional speckle tracking by minimizing decorrelation caused by pure elevational translation. In other words, 3-D tracking can push toward solely deformation-limited, decorrelation-optimized speckle tracking. Hardware implementation of the proposed 3-D speckle tracking algorithm using field programmable gate arrays (FPGA) is also discussed.
Independent measurements of the elastic modulus (Young's modulus) of tissue are necessary step in turning elasticity imaging into a clinical tool. A system capable of measuring the elastic modulus of small tissue samples was developed. The system tolerates the constraints of biological tissue, such as limited sample size (< or = 1.5 cm3) and imperfections in sample geometry. A known deformation is applied to the tissue sample while simultaneously measuring the resulting force. These measurements are then converted to an elastic modulus, where the conversion uses prior calibration of the system with plastisol samples of known Young's modulus. Accurate measurements have been obtained from 10 to 80 kPa, covering a wide range of tissue modulus values. In addition, the performance of the system was further investigated using finite element analysis. Finally, preliminary elasticity measurements on canine kidney samples are presented and discussed.
This paper describes work aimed at combining 3D ultrasound with full-field digital mammography via a semi-automatic prototype ultrasound scanning mechanism attached to the digital mammography system gantry. Initial efforts to obtain high x-ray and ultrasound image quality through a compression paddle are proving successful. Registration between the x-ray mammogram and ultrasound image volumes is quite promising when the breast is stably compressed. This prototype system takes advantage of many synergies between the co-registered digital mammography and pulse-echo ultrasound image data used for breast cancer detection and diagnosis. In addition, innovative combinations of advanced US and X-ray applications are being implemented and tested along with the basic modes. The basic and advanced applications are those that should provide relatively independent information about the breast tissues. Advanced applications include x-ray tomosynthesis, for 3D delineation of mammographic structures, and non-linear elasticity and 3D color flow imaging by ultrasound, for mechanical and physiological information unavailable from conventional, non-contrast x-ray and ultrasound imaging. IntroductionBreast ultrasound (US) is a valuable diagnostic adjunct to x-ray mammography for characterization of breast lesions such as cysts and solid masses, and evaluation of palpable masses that are obscured radiographically by dense breast tissue (1-3). Recently, there have been several studies suggesting the potential emerging role of ultrasound as a screening adjunct to x-ray mammography (4-9). For example in a study of 11,130 asymptomatic women, Kolb et al. (9) recently reported that the combined sensitivity of x-ray mammography and radiologist performed free-hand 3D breast ultrasound for women with dense breasts [BI-RADS (10) density category 4] improved to 94% from 48% for x-ray mammography alone. When mammographic findings indicate the need for follow up imaging with ultrasound, the specific regions in the breast requiring further interrogation must be anatomically identified for subsequent positioning and manipulation of an ultrasound probe. The critical step of accurately localizing the regions of interest however can be challenging to implement for a number of reasons. First, mammograms and sonograms are acquired with the patient in different positions -upright for the mammogram and supine for the US examination. This requires the sonographer to estimate the approximate 3D location of the region of interest from a 2D x-ray projection of a deformable breast. Second, US imaging is performed predominantly through free-hand manual manipulation of ultrasound probes in direct contact with the breast. The experience and skills of the operators may impact the accuracy of locating the region of interest. imaging locations and orientations and from a lower level of skill in detection and discrimination of lesions. Third, mammograms and sonograms may not be acquired on the same day. Therefore normal fibrocystic changes occurring over a period o...
It may be possible to diagnose and monitor scarring, inflammation and edema in transplant kidney using reconstructive ultrasound elasticity imaging. Kidney elasticity is expected to change dramatically with scar, and to a lesser degree, with acute inflammation and edema. The hypothesis that changes in kidney elasticity can be imaged using a clinical ultrasound scanner was experimentally tested with an ex vivo canine kidney model, and results on a single pair of kidneys are reported in this paper. A cross-linking agent affected kidney elasticity both globally and locally. Elasticity changes were monitored with accurate estimates of internal displacement and strain followed by Young's modulus reconstruction. The results of this study strongly suggest that ultrasound elasticity imaging can detect elasticity changes in complex structures such as the kidney. Moreover, it has the potential to become an important clinical tool for renal transplant diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.