Approaches to goal recognition have progressively relaxed the requirements about the amount of domain knowledge and available observations, yielding accurate and efficient algorithms capable of recognizing goals. However, to recognize goals in raw data, recent approaches require either human engineered domain knowledge, or samples of behavior that account for almost all actions being observed to infer possible goals. This is clearly too strong a requirement for real-world applications of goal recognition, and we develop an approach that leverages advances in recurrent neural networks to perform goal recognition as a classification task, using encoded plan traces for training. We empirically evaluate our approach against the state-of-the-art in goal recognition with image-based domains, and discuss under which conditions our approach is superior to previous ones.
Automated planning can be used to efficiently recognize goals and plans from partial or full observed action sequences. In this paper, we propose goal recognition heuristics that rely on information from planning landmarks - facts or actions that must occur if a plan is to achieve a goal when starting from some initial state. We develop two such heuristics: the first estimates goal completion by considering the ratio between achieved and extracted landmarks of a candidate goal, while the second takes into account how unique each landmark is among landmarks for all candidate goals. We empirically evaluate these heuristics over both standard goal/plan recognition problems, and a set of very large problems. We show that our heuristics can recognize goals more accurately, and run orders of magnitude faster, than the current state-of-the-art.
Brainhack events offer a novel workshop format with participant-generated content that caters to the rapidly growing open neuroscience community. Including components from hackathons and unconferences, as well as parallel educational sessions, Brainhack fosters novel collaborations around the interests of its attendees. Here we provide an overview of its structure, past events, and example projects. Additionally, we outline current innovations such as regional events and post-conference publications. Through introducing Brainhack to the wider neuroscience community, we hope to provide a unique conference format that promotes the features of collaborative, open science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.