To address the increasing interest towards more environmentally friendly naval transportation and the introduction of IMO2020 restrictions on pollutant emissions onboard ships, the present work details the preliminary design of a mini gas turbine engine, i.e., a gas turbine engine with an output power up to 5 MW, for onboard energy generation. In comparison to conventional propulsion systems, gas turbine units benefit from known compactness, which can be further enhanced by employing single-stage uncooled radial machines, according to similar works in the field. As such, the present paper aims to set up a complete procedure that allows a reliable and fast (i.e., requiring a limited computational effort) preliminary design of one-stage centrifugal compressors and radial turbines operating at a high pressure ratio via the use of classical one-dimensional theory. The aerodynamic design outputs in terms of forces and torques are then used to perform a preliminary mechanical design of the shaft by means of a one-dimensional finite element model with commercial software to estimate the corresponding shaft line stress. Despite some necessary geometrical and modeling simplification of the design problem, which results in the unavailability of detailed information on individual components, the employed procedure nevertheless allows a comprehensive overview of the possibilities in terms of maximum machine performance achievable at an early design stage with the associated limited computational requirements. The design procedure and the geometry achieved for the application are presented along with aerodynamic and structural results.
The design of the support system (shaft, bearings, and mechanical coupling devices) of the rotor plays a key role in the development of efficient micro-gas turbines (micro-GTs) for distributed power generation. Foil air bearings are the most widespread technical solution well suited to design a reliable support system, although they cannot withstand a large number of start-stop cycles of the units. In order to overcome such limitation, we have recently proposed an innovative support system that takes advantage of spline couplings and two bearing types (e.g., air and rolling-element bearings). The devised support system employs splines as both convenient coupling systems and actuators for the load partition between the two bearing types. In the present work, the helical spline coupling is studied by means of structural FEM analyses including contact simulation in order to design the support system. Numerical results confirm previous findings in that the load transfer through the spline coupling is mainly a function of the helix angle. In addition, friction factor and structural stiffness cannot be neglected in the accurate design of the spline coupling. Such design parameters are now included in the proposed design procedure, which formerly assumed frictionless contact and rigid bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.