In the present study, we treat the stochastic homogeneous Gompertz diffusion process (SHGDP) by the approach of the Kolmogorov equation. Firstly, using a transformation in diffusion processes, we show that the probability transition density function of this process has a lognormal time-dependent distribution, from which the trend and conditional trend functions and the stationary distribution are obtained. Second, the maximum likelihood approach is adapted to the problem of parameters estimation in the drift and the diffusion coefficient using discrete sampling of the process, then the approximated asymptotic confidence intervals of the parameter are obtained. Later, we obtain the corresponding inference of the stochastic homogeneous lognormal diffusion process as limit from the inference of SHGDP when the deceleration factor tends to zero. A statistical methodology, based on the above results, is proposed for trend analysis. Such a methodology is applied to modelling and forecasting vehicle stocks. Finally, an application is given to illustrate the methodology presented using real data, concretely the total vehicle stocks in Spain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.