While Wireless Sensor Networks (WSN) offer potentials, their limited programmability and energy-limitations determine operational challenges. Thus, a TinyIPFIX-based system was designed, such that this application layer protocol is now usable to exchange data in WSNs efficiently. The system implementation in MicroPython is simple and efficient in comparison to a lower level programming language, while displaying valuable properties in terms of overhead and power efficiency. Furthermore, it demonstrates that MicroPython may pave the way towards Network Function Virtualization (NFV) on Internetof-Things (IoT) devices by providing highly portable software functions implemented in a high-level programming language.
While wireless sensor networks (WSN) offer potential, their limited programmability and energy limitations determine operational challenges. Thus, a TinyIPFIX-based system was designed such that this application layer protocol is now used to exchange data in WSNs efficiently. The new prototype is based on the Espressif ESP32-WROOM-32D Internet-of-Things (IoT) platform, which is becoming famous, as it is inexpensive but powerful compared to older generations of IoT devices. The system implementation is provided in the programming language MicroPython, which provides a simple and efficient implementation, compared to a lower-level programming language. Therefore, this approach focuses on value creation rather than platform-specific implementation difficulties. The system is evaluated in smart home use cases and displays valuable overhead, reliability, and power efficiency. TinyIPFIX outperforms the data overhead of the type–length–value (TLV) paradigm by a factor of 7% when a TinyIPFIX data message carries only two records, and one TinyIPFIX template message is sent per three TinyIPFIX data messages. A further decrease in overhead is observed when the number of data records per message and the number of TinyIPFIX data messages sent per one TinyIPFIX template message increase to larger values. The message delivery between end devices and the application server resides at a very high level, close to 100%, when the transmission reliability is secured with acknowledgments and retransmissions. The energy efficiency resides at the limited level, as the experienced deep sleep power consumption of the ESP32 device resides at the milliwatt level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.