The goal of this paper is to present an end-to-end, data-driven framework to control Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first model the AMoD system using a time-expanded network, and present a formulation that computes the optimal rebalancing strategy (i.e., preemptive repositioning) and the minimum feasible fleet size for a given travel demand. Then, we adapt this formulation to devise a Model Predictive Control (MPC) algorithm that leverages short-term demand forecasts based on historical data to compute rebalancing strategies. Using simulations based on real customer data from DiDi Chuxing, we test the end-to-end performance of this controller with a stateof-the-art LSTM neural network to predict customer demand: we show that this approach scales very well for large systems (indeed, the computational complexity of the MPC algorithm does not depend on the number of customers and of vehicles in the system) and outperforms state-of-the-art rebalancing strategies by reducing the mean customer wait time by up to to 89.6 %.
In this paper we present a queuing network approach to the problem of routing and rebalancing a fleet of self-driving vehicles providing on-demand mobility within a capacitated road network. We refer to such systems as autonomous mobility-on-demand systems, or AMoD. We first cast an AMoD system into a closed, multi-class BCMP queuing network model. Second, we present analysis tools that allow the characterization of performance metrics for a given routing policy, in terms, e.g., of vehicle availabilities, and first and second order moments of vehicle throughput. Third, we propose a scalable method for the synthesis of routing policies, with performance guarantees in the limit of large fleet sizes. Finally, we validate the theoretical results on a case study of New York City. Collectively, this paper provides a unifying framework for the analysis and control of AMoD systems, which subsumes earlier Jackson and network flow models, provides a quite large set of modeling options (e.g., the inclusion of road capacities and general travel time distributions), and allows the analysis of second and higher-order moments for the performance metrics.
We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a non-profit ISO) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD), i.e. fleets of self-driving vehicles. We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation, and provide its performance guarantees. Second, we divide the controller into two submodules. The first submodule assigns vehicles to existing customers and the second redistributes vacant vehicles throughout the city. This enables the problem to be solved as two totally unimodular linear programs, allowing the controller to scale to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from the ridesharing company DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art nonstochastic algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.