The objective of this study is to demonstrate and validate the Dynamic Energy Transport and Integration Laboratory (DETAIL) preliminary scaling analysis using Modelica language system-code Dymola. The DETAIL preliminary scaling analysis includes a multisystem integral scaling package between thermal-storage and hydrogen-electrolysis systems. To construct the system of scaled equations, dynamical system scaling (DSS) was applied to all governing laws and closure relations associated with the selected integral system. The existing Dymola thermal-energy distribution system (TEDS) facility and high-temperature steam electrolysis (HTSE) facility models in the Idaho National Laboratory HYBRID repository were used to simulate a test case and a corresponding scaled case for integrated system HYBRID demonstration and validation. The DSS projected data based on the test-case simulations and determined scaling ratios were generated and compared with scaled case simulations. The preliminary scaling analysis performance was evaluated, and scaling distortions were investigated based on data magnitude, sequence, and similarity. The results indicated a necessity to change the normalization method for thermal storage generating optimal operating conditions of 261 kW power and mass flow rate of 6.42 kg/s and the possibility of reselecting governing laws for hydrogen electrolysis to improve scaling predictive properties. To enhance system-scaling similarity for TEDS and HTSE, the requirement for scaling validation via physical-facility demonstration was identified.
The purpose of this study was to develop a process to convert input signals from one facility into another by reflecting geometric and environmental settings. The Dynamic Energy Transport and Integration Laboratory (DETAIL) is one facility in development that aims to emulate the daily interactions among power production industry systems and be capable of receiving real-time data from those systems as inputs. To convert signals and ensure that the temporal sequences and magnitudes reflect the laboratory settings, the ability to scale and project data is essential. To demonstrate this ability, Dynamical System Scaling (a methodology that enables systems to scale and project or extrapolate datasets to desired environments while conserving the observed transient behavior based on first principles) was applied to DETAIL’s thermocline thermal storage system in the Thermal Energy Distribution System. The thermocline system was successfully scaled and a test case was conducted to generate a doubly accelerated energy charge and discharge in reference to past experimental data from the facility. The accelerated data were determined as able to conserve the amount of energy stored and the associated test boundary conditions were charge line maximum temperature, charge line velocity, and thermocline maximum temperature at 354 °C, 0.458 m/s, and 418 °C, respectively. The research results represented a case that required signals to be accelerated without altering the stored energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.