Desorption energy is a relevant parameter when studying the desorption kinetics of an ice under astrophysical conditions. Values reported are generally calculated using at least a desorption experiment and a further data analysis at present. In this work the establishment of a simple rule that relates the desorption energy of a species to the temperature of its desorption peak is explored. The paper presents the results obtained from zeroth-order desorption experiments, based on the use of a quartz crystal microbalance to monitor the loss of weight during desorption of the accreted ice sample under high-vacuum conditions, of nine different molecules covering a wide range of desorption energies. During these experiments, the ice desorption rate reaches a maximum at a certain temperature depending on the molecule. The formula obtained in this study facilitates the estimation of the desorption energy and is valid for all the investigated molecules. Based on these experimental results and simulations, the theoretical expression obtained is valid to calculate desorption energy for zeroth-and first-order desorption experiments under high-or ultrahigh-vacuum conditions using different ice thickness films.
The desorption process of methanol in the hot cores of massive young stars is addressed in this work. The study of pure methanol ice and when it is mixed or layered with water allows a better understanding of the physical and chemical processes which could have occurred during the formation of methanol and it is possible to infer the range of temperatures within which methanol can be found in the gas phase in these scenarios. The goal of this study was to model the desorption process of methanol as pure ice and mixed or layered with water under the conditions present in the early stages of hot cores whichcharacterize young star formation. The simulations of desorption of methanol, when it stands alone, performed in this work were compared to the values obtained by other authors to validate the method presented. In this work, the desorption of a water:methanol mixture under astrophysical conditions is also simulated. The theoretical results obtained for layered mixtures match with the temperatures at which an increase of the presence of methanol in the gas phase is detected when young massive mass stars are observed. This study has been performed using the frequency variation of a quartz crystal microbalance which provides a direct measure of the desorbing molecules during the experiments. This process was modelled using the Polanyi-Wigner equation and applied to astrophysical scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.