As energy-related costs have become a major economical factor for IT infrastructures and data-centers, companies and the research community are being challenged to find better and more efficient power-aware resource management strategies. There is a growing interest in "Green" IT and there is still a big gap in this area to be covered.In order to obtain an energy-efficient data center, we propose a framework that provides an intelligent consolidation methodology using different techniques such as turning on/off machines, power-aware consolidation algorithms, and machine learning techniques to deal with uncertain information while maximizing performance. For the machine learning approach, we use models learned from previous system behaviors in order to predict power consumption levels, CPU loads, and SLA timings, and improve scheduling decisions. Our framework is vertical, because it considers from watt consumption to workload features, and cross-disciplinary, as it uses a wide variety of techniques.We evaluate these techniques with a framework that covers the whole control cycle of a real scenario, using a simulation with representative heterogeneous workloads, and we measure the quality of the results according to a set of metrics focused toward our goals, besides traditional policies. The results obtained indicate that our approach is close to the optimal placement and behaves better when the level of uncertainty increases.
Abstract-The reduction of energy consumption in large-scale datacenters is being accomplished through an extensive use of virtualization, which enables the consolidation of multiple workloads in a smaller number of machines. Nevertheless, virtualization also incurs some additional overheads (e.g. virtual machine creation and migration) that can influence what is the best consolidated configuration, and thus, they must be taken into account. In this paper, we present a dynamic job scheduling policy for power-aware resource allocation in a virtualized datacenter. Our policy tries to consolidate workloads from separate machines into a smaller number of nodes, while fulfilling the amount of hardware resources needed to preserve the quality of service of each job. This allows turning off the spare servers, thus reducing the overall datacenter power consumption. As a novelty, this policy incorporates all the virtualization overheads in the decision process. In addition, our policy is prepared to consider other important parameters for a datacenter, such as reliability or dynamic SLA enforcement, in a synergistic way with power consumption. The introduced policy is evaluated comparing it against common policies in a simulated environment that accurately models HPC jobs execution in a virtualized datacenter including power consumption modeling and obtains a power consumption reduction of 15% with respect to typical policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.