There has been a lot of interest in the use of discrete-time recurrent neural nets (DTRNN) to learn finite-state tasks, with interesting results regarding the induction of simple finite-state machines from input-output strings. Parallel work has studied the computational power of DTRNN in connection with finite-state computation. This article describes a simple strategy to devise stable encodings of finite-state machines in computationally capable discrete-time recurrent neural architectures with sigmoid units and gives a detailed presentation on how this strategy may be applied to encode a general class of finite-state machines in a variety of commonly used first- and second-order recurrent neural networks. Unlike previous work that either imposed some restrictions to state values or used a detailed analysis based on fixed-point attractors, our approach applies to any positive, bounded, strictly growing, continuous activation function and uses simple bounding criteria based on a study of the conditions under which a proposed encoding scheme guarantees that the DTRNN is actually behaving as a finite-state machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.