Two outstanding unknowns in the biology of photoreceptors are the molecular determinants of cell size, which is remarkably uniform among mammalian species, and the mechanisms of rod cell death associated with inherited neurodegenerative blinding diseases such as retinitis pigmentosa. We have addressed both questions by performing an in vivo titration with rhodopsin gene copies in genetically engineered mice that express only normal rhodopsin or an autosomal dominant allele, encoding rhodopsin with a disease-causing P23H substitution. The results reveal that the volume of the rod outer segment is proportional to rhodopsin gene expression; that P23H-rhodopsin, the most common rhodopsin gene disease allele, causes cell death via a dominant-negative mechanism; and that long term survival of rod cells carrying P23H-rhodopsin can be achieved by increasing the levels of wild type rhodopsin. These results point to promising directions in gene therapy for autosomal dominant neurodegenerative diseases caused by dominant-negative mutations.
Identifying binding sites and target genes of transcription factors is a major biologic problem. The most commonly used current technique, chromatin immunoprecipitation (ChIP), is dependent on a high quality antibody for each protein of interest, which is not always available, and is also cumbersome, involving sequential cross-linking and reversal of cross-linking. We have developed a novel strategy to study protein DNA binding sites in vivo, which we term DamIP. By tethering a mutant form of E. coli DNA adenine methyltransferase to the target protein, the fusion protein introduces N-6-adenosine methylation to sequences proximal to the protein binding sites. DNA fragments with this modification, which is absent in eukaryotes, are detected using an antibody directed against methylated adenosine. For an initial test of the method we used human estrogen receptor α (hERα), one of the best studied transcription factors. We found that expression of Dam-hERα fusion proteins in MCF-7 cells introduces adenosine methylation near a series of known direct hERα binding sites. Specific methylation tags are also found at indirect hERα binding sites, including both primary binding sites for the ER interactors AP-1 and SP1, and promoters that are activated by upstream ER bound enhancers. DamIP provides a new tool for the study of DNA interacting protein function in vivo.
Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes—presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK-293T and HT-1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.