COVID-19 pandemic is the biggest public health problem of the century so far.The main protease (Mpro) is one of the main enzymes studied as a pharmacological target. In this context, the present work aimed to perform a virtual screening of possible inhibitors against the enzyme Mpro, having limonoids as the main object of research as supposed inhibitors. Molecular docking simulations indicated that limonoids have an affinity to complex with M-pro.However, Limonine and Nimoliciol showed nonspecific and low affinity interactions. In conclusion, Limonoids are substances of natural origin that can be used in the study of new pharmacological tools designed to combat and understand COVID-19.
Obesity and dyslipidemia are conditions often associated with cardiovascular risk, inflammation, oxidative stress, and death. Thus, a new approach has been highlighted to promote research and development of pharmacological tools derived from natural sources. Among the most widely studied groups of substances, polyphenols such as tyramine stand out. This study investigated hypolipidemic and anti-obesity properties of tyramine. Oral toxicity evaluation, models of dyslipidemia and obesity were used. To induce dyslipidemia, Poloxamer-407 (P-407) was administered intraperitoneally. In the hypercholesterolemic and obesity model, specific diet and oral tyramine were provided. After 24h of P-407 administration, tyramine 2 mg/kg (T2) decreased triglycerides (TG) (2057.0 ± 158.5 mg/dL vs. 2838 ± 168.3 mg/dL). After 48h, TG were decreased by T2 (453.0 ± 35.47 vs. 760.2 ± 41.86 mg/dL) and 4 mg/kg (T4) (605.8 ± 26.61 760.2 ± 41.86 mg/dL). T2 reduced total cholesterol (TC) after 24h (309.0 ± 11.17 mg/dL vs. 399.7 ± 15.7 mg/dL); After 48h, 1 mg/kg (T1) (220.5 ± 12.78 mg/dL), T2 (205.8 ± 7.1 mg/dL) and T4 (216.8 ± 12.79 mg/dL), compared to P-407 (275.5 ± 12.1 mg/dL). The treatment decreased thiobarbituric acid reactive substances and nitrite in liver, increased superoxide dismutase, reduced the dietinduced dyslipidemia, decreasing TC around 15%. Tyramine reduced body mass, glucose, and TC after hypercaloric feed. Treatment with 5 mg/L (0.46 ± 0.04 ng/dL) and 10 mg/L (0.44 ± 0.02 ng/dL) reduced plasma insulin (1.18 ± 0.23 ng/dL). Tyramine increased adiponectin at 5 mg/L (1.02 ± 0.02 vs. 0.83 ± 0.02 ng/mL) and 10mg/L (0.96 ± 0.04 ng/mL). In conclusion, tyramine has low toxicity in rodents, has antioxidant effect, reduces plasma triglycerides and cholesterol levels. However, further studies should be conducted in rodents and non-rodents to better understand the pharmacodynamic and pharmacokinetic properties of tyramine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.