Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak.It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Background In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae ). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia. Methodology/Principal findings We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China. Conclusions GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa , or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.
Please cite this paper as: Horm et al. (2012) Environment: a potential source of animal and human infection with influenza A (H5N1) virus. Influenza and Other Respiratory Viruses 6(6), 442–448. Background Very little is known regarding the persistence of highly pathogenic avian influenza H5N1 viruses in natural settings during outbreaks in tropical countries, although environmental factors may well play a role in the persistence and in the transmission of H5N1 virus. Objective To investigate various environmental compartments surrounding outbreak areas as potential sources for H5N1 virus transmission. Methods Environmental specimens were collected following outbreaks of avian influenza in Cambodia between April 2007 and February 2010. The methods used to concentrate H5N1 virus from water samples were based either on agglutination of the virus with chicken red blood cells or on adsorption on glass wool, followed by an elution‐concentration step. An elution‐concentration method was used for mud specimens. All samples that tested positive by real‐time RT‐PCRs (qRT‐PCRs) targeting the HA5, M and NA1 genes were inoculated into embryonated hen eggs for virus isolation. Results Of a total of 246 samples, 46 (19%) tested positive for H5N1 by qRT‐PCRs. Viral RNA was frequently detected in dust, mud and soil samples from the farms’ environment (respectively, 46%, 31% and 15%). Samples collected from ponds gave a lower proportion of positive samples (6%) as compared to those collected from the farms (24%). In only one sample, infectious virus particles were successfully isolated. Conclusion During H5N1 virus outbreaks, numerous environmental samples surrounding outbreak areas are contaminated by the virus and may act as potential sources for human and/or animal contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.