Patients with cardiac disease typically develop life-threatening ventricular arrhythmias during physical or emotional stress, suggesting a link between adrenergic stimulation and regulation of the cardiac action potential. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of the repolarizing delayed rectifier potassium current, I(Kr). Previous studies have revealed that hERG channel activation is modulated by activation of the beta-adrenergic system. In contrast, the influence of the alpha-adrenergic signal transduction cascade on hERG currents is less well understood. The present study examined the regulation of hERG currents by alpha(1A)-adrenoceptors. hERG channels and human alpha(1A)-adrenoceptors were heterologously coexpressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique. Stimulation of alpha(1A)-receptors by applying 20 microM phenylephrine caused hERG current reduction due to a 9.6-mV shift of the activation curve towards more positive potentials. Simultaneous application of the alpha(1)-adrenoceptor antagonist prazosin (20 microM) prevented the activation shift. Inhibition of PKC (3 microM Ro-32-0432) or PKA (2.5 microM KT 5720) abolished the alpha-adrenergic activation shift, suggesting that PKC and PKA are required within the regulatory mechanism. The effect was still present when the PKA- and PKC-dependent phosphorylation sites in hERG were deleted by mutagenesis. In summary, cardiac repolarizing hERG/I(Kr) potassium currents are modulated by alpha(1A)-adrenoceptors via PKC and PKA independently of direct channel phosphorylation. This novel regulatory pathway of alpha1-adrenergic hERG current regulation provides a link between stress and ventricular arrhythmias, in particular in patients with heart disease.
Background and purpose: Two-pore-domain potassium (K 2P ) channels mediate potassium background (or 'leak') currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K 2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K 2P channels. Experimental approach: The two-electrode voltage clamp technique was used to record K 2P currents in Xenopus oocytes. In addition, K 2P channels were studied in Chinese hamster ovary (CHO) cells using the whole-cell patch clamp technique. Key results: Here, we report inhibition of human K 2P 3.1 (TASK-1) currents by the TK antagonist, genistein, in Xenopus oocytes (IC 50 ¼ 10.7 mM) and in CHO cells (IC 50 ¼ 12.3 mM). The underlying molecular mechanism was studied in detail. hK 2P 3.1 was not affected by genistin, an inactive analogue of genistein. Perorthovanadate, an inhibitor of tyrosine phosphatase activity, reduced the inhibitory effect of genistein. Current reduction was voltage independent and did not require channel protonation at position H98 or phosphorylation at the single TK phosphorylation site, Y323. Among functional hK 2P family members, genistein also reduced K 2P 6.1 (TWIK-2), K 2P 9.1 (TASK-3) and K 2P 13.1 (THIK-1) currents, respectively. Conclusions and implications: Modulation of K 2P channels by the TK inhibitor, genistein, represents a novel molecular mechanism to alter background K þ currents.
The antihypertensive drug doxazosin has been associated with an increased risk for congestive heart failure and cardiomyocyte apoptosis. Human ether-a-go-go-related gene (hERG) K(+) channels, previously shown to be blocked by doxazosin at therapeutically relevant concentrations, represent plasma membrane receptors for the antihypertensive drug. To elucidate the molecular basis for doxazosin-associated pro-apoptotic effects, cell death was studied in human embryonic kidney cells using three independent apoptosis assays. Doxazosin specifically induced apoptosis in hERG-expressing HEK cells, while untransfected control groups were insensitive to treatment with the antihypertensive agent. An unexpected biological mechanism has emerged: binding of doxazosin to its novel membrane receptor, hERG, triggers apoptosis, possibly representing a broader pathophysiological mechanism in drug-induced heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.