In this work, we have synthesized twenty five new 2-(5-(5-nitrofuran-2-yl)-1,3,4-thiadiazol-2-ylimino)thiazolidin-4-one derivatives bearing an aryl or heteroaryl methylene group on position 5 of thiazolidinone and evaluated their antimicrobial activity against Gram-positive and -negative bacteria as well as three metronidazole resistant Helicobacter pylori strains. Most of the compounds were very potent towards tested Gram-positive bacteria and showed an antibacterial efficacy substantially greater than ampicillin as the reference drug. However, no effectiveness was observed for the Gram-negative microorganisms. The compounds 9, 20 and 29 exhibited strong antimicrobial activity against Helicobacter pylori strains (inhibition zone > 30 mm) in 100 μg/disc and (inhibition zone > 20 mm) in 50 μg/disc. Taking these findings together, it seems that these potent antibacterial derivatives could be considered as promising agents for developing new anti-infectious drugs against microorganisms resistant to currently available antibiotics.
Graphical Abstract
A green and efficient method for preparing novel heterocyclic systems is established through the reaction of differently substituted benzaldehydes, barbituric acid and 4-amino-2H-chromene-2-one under solvent-free conditions. This method affords 6H-chromeno[3’,4’:5,6] pyrido[2,3-d]pyrimidine-trione derivatives in high yields and short reaction times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.