Electrochemical technologies for the treatment of industrial and municipal wastewaters, potable water, and groundwater, are presented, focusing on the main water constituents: inorganics, organics, micropollutants, and microorganisms. Removal of inorganic compounds by electrodialysis, electrocoagulation, and capacitive deionization as well as removal of organics and micropollutants by electrosorption, advanced oxidation processes, and anodic oxidation with boron‐doped diamond electrodes are reviewed. Electricity can be generated by degradation of organic compounds in microbial fuel cells and dehalogenation by cathodic reduction minimizes toxic substances in water. The disinfection of different types of water is also presented and it is shown that electrochemical methods offer versatile approaches to contribute to an sustainable future water management.
By using its purchasing power to procure environmentally friendly goods and services, the public sector can significantly contribute to sustainability in production and consumption. The sector’s support is also needed for the development of a circular economy (CE), but the absence of a suitable procurement practice often constitutes a barrier. A pressing example for a global need to develop the CE further exists in the tyre context. By the end of 2030, the number of end-of-life tyres (ELT) is expected to rise significantly. This article analyses the role and situation of public procurement and the necessity of quality infrastructure elements to support a sustainable tyre CE in the European Union’s member state Germany. It relies on a multiple case case study-based Grounded Theory approach and 22 interviews with public procurement professionals. Five types of barriers for sustainable circular tyre procurement were identified, concerning regulatory, technical, social, market, and ecological aspects. Possible strategies to overcome them were developed, leading to 14 recommendations for German policymakers and public procurement organisations. In particular, the recommendations focus on the two quality infrastructure elements ‘standards’ and ‘labelling’, with four standardization aspects and eight labelling topics in total.
According to the United Nations, the consumption of materials is expected to double between 2020 and 2050. At the same time, annual waste generation is forecast to increase by 70% by 2050. The circular economy (CE) addresses this problem. However, many barriers to the further development of the CE exist. This article analyses the situation of public procurement in supporting a sustainable CE for tyres in Germany based on 18 interviews with public procurement professionals directly responsible for the purchase of tyres and four additional expert interviews. Based on the dimensions ‘current circular public procurement (CPP) intensity’ and ‘current CPP opportunities’, a classification of tyre procurement situations and barriers to sustainable circular tyre procurement is presented. Strategies to overcome these supply-side and demand-side barriers are specified, resulting in nine recommendations for German policymakers. As a way forward, a detailed concept for a pilot project on tyre CPP is provided. The article also shows how the circular public procurement classification can be used to support sustainability measures in a broader context. Finally, the article’s outlook focuses on implications to promote sustainable circular tyre procurement in other countries. It explains different framework conditions and elaborates to what extent additional research is necessary to develop appropriate recommendations for those conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.