Short‐ to medium‐range flood forecasts are central to predicting and mitigating the impact of flooding across the world. However, producing reliable forecasts and reducing forecast uncertainties remains challenging, especially in poorly gauged river basins. The growing availability of synthetic aperture radar (SAR)‐derived flood image databases (e.g., generated from SAR sensors such as Envisat advanced synthetic aperture radar) provides opportunities to improve flood forecast quality. This study contributes to the development of more accurate global and near real‐time remote sensing‐based flood forecasting services to support flood management. We take advantage of recent algorithms for efficient and automatic delineation of flood extent using SAR images and demonstrate that near real‐time sequential assimilation of SAR‐derived flood extents can substantially improve flood forecasts. A case study based on four flood events of the River Severn (United Kingdom) is presented. The forecasting system comprises the SUPERFLEX hydrological model and the Lisflood‐FP hydraulic model. SAR images are assimilated using a particle filter. To quantify observation uncertainty as part of data assimilation, we use an image processing approach that assigns each pixel a probability of being flooded based on its backscatter values. Empirical results show that the sequential assimilation of SAR‐derived flood extent maps leads to a substantial improvement in water level forecasts. Forecast errors are reduced by as much as 50% at the assimilation time step, and improvements persist over subsequent time steps for 24 to 48 hr. The proposed approach holds promise for improving flood forecasts at locations where observed data availability is limited but satellite coverage exists.
This paper presents an automatic algorithm for mapping floods. Its main characteristic is that it can detect not only inundated bare soils, but also floodwater in urban areas. The synthetic aperture radar (SAR) observations of the flood that hit the city of Houston (Texas) following the landfall of Hurricane Harvey in 2017 are used to apply and validate the algorithm. The latter consists of a two-step approach that first uses the SAR data to identify buildings and then takes advantage of the Interferometric SAR coherence feature to detect the presence of floodwater in urbanized areas. The preliminary detection of buildings is a pre-requisite for focusing the analysis on the most risk-prone areas. Data provided by the Sentinel-1 mission acquired in both Strip Map and Interferometric Wide Swath modes were used, with a geometric resolution of 5 m and 20 m, respectively. Furthermore, the coherence-based algorithm takes full advantage of the Sentinel-1 mission’s six-day repeat cycle, thereby providing an unprecedented possibility to develop an automatic, high-frequency algorithm for detecting floodwater in urban areas. The results for the Houston case study have been qualitatively evaluated through very-high-resolution optical images acquired almost simultaneously with SAR, crowdsourcing points derived by photointerpretation from Digital Globe and Federal Emergency Management Agency’s (FEMA) inundation model over the area. For the first time the comparison with independent data shows that the proposed approach can map flooded urban areas with high accuracy using SAR data from the Sentinel-1 satellite mission.
This paper studies the performances of different ship detectors based on adaptive threshold algorithms. The detection algorithms are based on various clutter distributions and assessed automatically with a systematic methodology. Evaluation using large datasets of medium resolution SAR images and AIS (automatic identification system) data as ground truths allows to evaluate the efficiency of each detector. Depending on the datasets used for testing, the detection algorithms offer different advantages and disadvantages. The systematic method used in discriminating real detected targets and false alarms in order to determine the detection rate, allows us to perform an appropriate and consistent comparison of the detectors. The impact of SAR sensors characteristics (incidence angle, polarization, frequency and spatial resolution) is fully assessed, the vessels' length being also considered. Experiments are conducted on Radarsat-2 and CosmoSkymed ScanSAR datasets and AIS data acquired by coastal stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.