Visible light initiates the stereoselective formation of two new bonds, a C À C and a C À Si bond, during the addition of acylsilanes to alkynes. At room temperature this photochemically induced transformation can be applied for the preparation of chromone derivatives in a highly atom-economic manner.
Acylsilanes are known to undergo a 1,2-silicon-to-oxygen migration under thermal or photochemical conditions to form siloxycarbenes. However, there are few reports regarding the application of siloxycarbenes in organic synthesis and surprisingly, their reaction with CC double or triple bonds remains virtually unexplored. To facilitate such a study, previously inaccessible aromatic acylsilanes containing an ortho-tethered CC double bond were identified as suitable substrates. To access these key intermediates, we developed a new synthetic method utilizing a rhodium-catalyzed oxidative Heck-type olefination involving the application of an acylsilane moiety as a directing group. When exposed to visible-light irradiation, the ortho-olefinated acylsilanes underwent a smooth intramolecular cyclization process to afford valuable indanone derivatives in quantitative yields. This result paves the way for the development of new transformations involving siloxycarbene intermediates.
Light-induced Brook rearrangements of acylsilanes facilitate silylacylation reactions of electron-deficient internal alkynes. A wide range of aromatic substituents on the acylsilane aryl group are tolerated, affording a series of functionalized enonyl silanes. The presence of electron-withdrawing substituents on the alkyne is crucial for the success of the addition process.
To assess the potential of N-alkynylated sulfoximines as new (chiral) reagents for organic synthesis, their reactivity profile in numerous synthetic processes is under investigation. When reacted with ketenes, the alkynylated-sulfoximines undergo a [2 + 2]-cycloaddition process to afford sulfoximine-functionalized cyclobutenones in excellent yields.
Exposing ortho-amido aroylsilanes to visible light or heat leads to cyclization reactions that provide N-heterocyclic compounds via siloxycarbenes as key intermediates. The previously unreported starting materials have been prepared by directed amidations of aromatic acylsilanes in the presence of an iridium catalyst followed by N-alkylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.