Over half of colorectal cancers (CRCs) harbor TP53 missense mutations (mutp53). We show that the most common mutp53 allele R248Q (p53) exerts gain of function (GOF) and creates tumor dependence in mouse CRC models. mutp53 protein binds Stat3 and enhances activating Stat3 phosphorylation by displacing the phosphatase SHP2. Ablation of the p53 allele suppressed Jak2/Stat3 signaling, growth, and invasiveness of established, mutp53-driven tumors. Treating tumor-bearing mice with an HSP90 inhibitor suppressed mutp53 levels and tumor growth. Importantly, human CRCs with stabilized mutp53 exhibit enhanced Jak2/Stat3 signaling and are associated with poorer patient survival. Cancers with TP53 are associated with a higher patient death risk than are those having nonR248 mutp53. These findings identify GOF mutp53 as a therapeutic target in CRC.
p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This is observed in tumor-derived U2OS cells but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supports DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53's tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity; i.e., the prevention of DNA damage during replication.
p53 missense mutant alleles are present in nearly 40% of all human tumors. Such mutated alleles generate aberrant proteins that not only lose their tumor-suppressive functions but also frequently act as driver oncogenes, which promote malignant progression, invasion, metastasis, and chemoresistance, leading to reduced survival in patients and mice. Notably, these oncogenic gain-of-function (GOF) missense mutant p53 proteins (mutp53) are constitutively and tumor-specific stabilised. This stabilisation is one key pre-requisite for their GOF and is largely due to mutp53 protection from the E3 ubiquitin ligases Mdm2 and CHIP by the HSP90/HDAC6 chaperone machinery. Recent mouse models provide convincing evidence that tumors with highly stabilized GOF mutp53 proteins depend on them for growth, maintenance, and metastasis, thus creating exploitable tumor-specific vulnerabilities that markedly increase lifespan if intercepted. This identifies mutp53 as a promising cancer-specific drug target. This review discusses direct mutp53 protein-targeting drug strategies that are currently being developed at various preclinical levels.
Missense mutations in TP53 comprise >75% of all p53 alterations in cancer, resulting in highly stabilized mutant p53 proteins that not only lose their tumor-suppressor activity, but often acquire oncogenic gain-of-functions (GOFs). GOF manifests itself in accelerated tumor onset, increased metastasis, increased drug resistance and shortened survival in patients and mice. A known prerequisite for GOF is mutant p53 protein stabilization, which itself is linked to aberrant protein conformation. However, additional determinants for mutant p53 stabilization likely exist. Here we show that in initially heterozygous mouse tumors carrying the hotspot GOF allele R248Q (p53Q/+), another necessary prerequisite for mutant p53 stabilization and GOF in vivo is loss of the remaining wild-type p53 allele, termed loss-of-heterozygosity (LOH). Thus, in mouse tumors with high frequency of p53 LOH (osteosarcomas and fibrosarcomas), we find that mutant p53 protein is stabilized (16/17 cases, 94%) and tumor onset is significantly accelerated compared with p53+/− tumors (GOF). In contrast, in mouse tumors with low frequency of p53 LOH (MMTV-Neu breast carcinomas), mutant p53 protein is not stabilized (16/20 cases, 80%) and GOF is not observed. Of note, human genomic databases (TCGA, METABRIC etc.) show a high degree of p53 LOH in all examined tumor types that carry missense p53 mutations, including sarcomas and breast carcinomas (with and without HER2 amplification). These data – while cautioning that not all genetic mouse models faithfully represent the human situation – demonstrate for the first time that p53 LOH is a critical prerequisite for missense mutant p53 stabilization and GOF in vivo.
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.