Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low‐pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high‐performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.
We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary dimension n, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the "thickness" or "fatness" of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.
We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced provided the transition functions are bi-Lipschitz with a constant close to 1, and the sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold.The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the ouput complex is also a Delaunay triangulation of its vertices with respect to this piecewise flat metric.
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of δ-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulations under perturbations of the metric and of the vertex positions. We quantify the magnitude of the perturbations under which the Delaunay triangulation remains unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.