Adult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretical study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism. According to this model, a flavin-superoxide radical pair, born in the singlet spin configuration, undergoes magnetic field-dependent spin dynamics such that the pair’s recombination is enhanced as the applied magnetic field is reduced. This model has two ostensible weaknesses: a) the assumption of a singlet initial state is irreconcilable with known reaction pathways generating such radical pairs, and b) the model neglects the swift spin relaxation of free superoxide, which abolishes any magnetic sensitivity in geomagnetic/hypomagnetic fields. We here suggest that a model based on a radical triad and the assumption of a secondary radical scavenging reaction can, in principle, explain the phenomenon without unnatural assumptions, thus providing a coherent explanation of hypomagnetic field effects in biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.