Treatment of autoimmune and inflammatory diseases typically involves immune suppression. In an opposite strategy, we show that administration of the highly inflammatory erythrocyte-specific antibody Ter119 into mice remodels the monocyte cellular landscape, leading to resolution of inflammatory disease. Ter119 with intact Fc function was unexpectedly therapeutic in the K/BxN serum transfer model of arthritis. Similarly, it rapidly reversed clinical disease progression in collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis and completely corrected CAIA-induced increase in monocyte Fcγ receptor II/III expression. Ter119 dose-dependently induced plasma chemokines CCL2, CCL5, CXCL9, CXCL10, and CCL11 with corresponding alterations in monocyte percentages in the blood and liver within 24 hours. Ter119 attenuated chemokine production from the synovial fluid and prevented the accumulation of inflammatory cells and complement components in the synovium. Ter119 could also accelerate the resolution of hypothermia and pulmonary edema in an acute lung injury model. We conclude that this inflammatory anti-erythrocyte antibody simultaneously triggers a highly efficient anti-inflammatory effect with broad therapeutic potential.
Monoclonal IgG antibodies to CD44 (anti-CD44) are anti-inflammatory in numerous murine autoimmune models but the mechanisms are poorly understood. Anti-CD44 anti-inflammatory activity shows complete therapeutic concordance with intravenous immunoglobulin (IVIg) in treating autoimmune disease models, making anti-CD44 a potential IVIg alternative. In murine immune thrombocytopenia (ITP), there is currently no mechanistic explanation for anti-CD44 activity although anti-CD44 ameliorates disease similarly to IVIg. Here we demonstrate a novel anti-inflammatory mechanism of anti-CD44 that explains disease amelioration by anti-CD44 in murine ITP. Macrophages treated with anti-CD44 in vitro had dramatically suppressed phagocytosis through FcγRs in two separate systems of IgG-opsonized platelets and erythrocytes. Phagocytosis inhibition by anti-CD44 was mediated by blockade of the FcγR IgG binding site without changing surface FcγR expression. Anti-CD44 of different subclasses revealed that FcγR blockade was specific to receptors that could be engaged by the respective anti-CD44 subclass, and Fc-deactivated anti-CD44 variants lost all FcγR-inhibiting activity. In vivo, anti-CD44 functioned analogously in the murine passive ITP model and protected mice from ITP when thrombocytopenia was induced through an FcγR that could be engaged by the CD44 antibody's subclass. Consistent with FcγR blockade, Fc-deactivated variants of anti-CD44 were completely unable to ameliorate ITP. Together, anti-CD44 inhibits macrophage FcγR function and ameliorates ITP consistent with an FcγR blockade mechanism. Anti-CD44 is a potential IVIg alternative and may be of particular benefit in ITP due to the significant role of FcγRs in human ITP pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.