BackgroundPlants exposed to environmental stresses draw upon many genetic and epigenetic strategies, with the former sometimes modulated by the latter. This can help the plant, and its immediate progeny, at least, to better endure the stress. Some evidence has led to proposals that (epi) genetic changes can be both selective and sustainably heritable, while other evidence suggests that changes are effectively stochastic, and important only because they induce genetic variation. One type of stress with an arguably high level of stochasticity in its effects is temperature stress. Studies of how heat and cold affect the rates of meiotic recombination (MR) and somatic mutations (SMs, which are potentially heritable in plants) report increases, decreases, or no effect. Collectively, they do not point to any consistent patterns. Some of this variability, however, might arise from the stress being applied for such an extended time, typically days or weeks. Here, we adopted a targeted approach by (1) limiting exposure to one hour; and (2) timing it to coincide with (a) gamete, and early gametophyte, development, a period of high stress sensitivity; and (b) a late stage of vegetative development.ResultsFor plants (Arabidopsis thaliana) otherwise grown at 22 °C, we measured the effects of a 1 h exposure to cold (12 °C) or heat (32 °C) on the rates of MR, and four types of SMs (frameshift mutations; intrachromosomal recombination; base substitutions; transpositions) in the F1 progeny. One parent (wild type) was stressed, the other (unstressed) carried a genetic event detector. When rates were compared to those in progeny of control (both parents unstressed) two patterns emerged. In the progeny of younger plants (stressed at 36 days; pollinated at 40 days) heat and cold either had no effect (on MR) or (for SMs) had effects that were rare and stochastic. In the progeny of older plants (stressed at 41 days; pollinated at 45 days), while effects were also infrequent, those that were seen followed a consistent pattern: rates of all five genetic events were lowest at 12 °C and highest at 32 °C, i.e. they varied in a “dose-response” manner. This pattern was strongest (or, in the case of MR, only apparent) in progeny whose stressed parent was female.ConclusionWhile the infrequency of effects suggests the need for cautious inference, the consistency of responses in the progeny of older plants, indicate that in some circumstances the level of stochasticity in inherited genetic responses to heat or cold stress can be context-dependent, possibly reflecting life-cycle stages in the parental generation that are variably stress sensitive.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-1051-1) contains supplementary material, which is available to authorized users.
Crossing over, the exchange of DNA between the chromosomes during meiosis, contributes significantly to genetic variation. The rate of crossovers (CO) varies depending upon the taxon, population, age, external conditions, and also, sometimes, between the sexes, a phenomenon called heterochiasmy. In the model plant Arabidopsis thaliana, the male rate of all crossover events (mCO) is typically nearly double the female rate (fCO). A previous, PCR-based genotyping study has reported that the disparity decreases with increasing parental age, because fCO rises while mCO remains stable. We revisited this topic using a fluorescent tagged lines approach to examine how heterochiasmy responded to parental age in eight genomic intervals distributed across the organism’s five chromosomes. We determined recombination frequency for, on average, more than 2000 seeds, for each interval, for each of four age groups, to estimate sex-specific CO rates. mCO did not change with age, as reported previously, but, here, fCO did not rise, and thus the levels of heterochiasmy were unchanged. We can see no methodological reason to doubt that our results reflect the underlying biology of the accessions we studied. The lack of response to age could perhaps be due to previously reported variation in CO rate among accessions of Arabidopsis.
Breast cancer has become very common among women and is the major cause of morbidity. The progression of breast cancer and the formation of secondary tumors in other organs is of major concern. Relapse and recurrence of breast cancer worsen the situation. Multiple genes get altered facilitating metastasis of cancer and downregulation/upregulation of many genes causes variations in molecular expression leading to progression in breast cancer cells. Mainly subtypes of breast cancer are distinct in the expression of hormone receptors (HR) and other proteins like ER, PR, HER2. Breast cancer can invade distant organs commonly in the bone, brain, lung, liver, and also the local region like the chest wall, and lymph nodes. Understanding the mechanism of cancer progression and molecules involved in breast cancer will help in developing therapies to prevent metastasis and find cures for breast cancer. In this review, the biomolecules such as ER, PR, HER2, etc. and the genes involved in breast cancer during its progression, and the mechanisms involved in metastasis have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.