The study emphasized the fact that the noninvasive, continuous BP measurement technique needs to evolve further to make it reliable, accurate, and user-friendly. Lastly, a possible direction toward a more reliable and comfortable noninvasive continuous BP measurement technique has been discussed.
The developed BP monitoring system is quite accurate, reliable, cost-effective, handy, and user friendly. It is also expected that this system would be quite useful to monitor the BP of infants, elderly people, patients having wounds, burn injury, or in the intensive care unit environment.
In this study, a semi cylindrical capacitive array type liquid interface level measuring sensor is described. The sensor consists of a continuous large semi cylindrical thin metallic plate acting as a common plate of the capacitor and an array of small semi cylindrical thin metallic plates, separated by very small gap distance. All plates are mounted along the outer wall of a cylindrical non conducting vertical storage tank. The detection of liquid interface is based on the measurement of capacitance of the array of plates which varies with the dielectric constant of the liquid within the tank. The measured capacitance has been obtained in nano farad range. Since the sensor is non contact type, it can be used for both conducting and non conducting type of liquid contained within a non conducting tank. Experimental results confirm the satisfactory performance of the sensor for liquid interface level measurement.
In this study, a semi cylindrical capacitive array type liquid interface level measuring sensor is described. The sensor consists of a continuous large semi cylindrical thin metallic plate acting as a common plate of the capacitor and an array of small semi cylindrical thin metallic plates, separated by very small gap distance. All plates are mounted along the outer wall of a cylindrical non conducting vertical storage tank. The detection of liquid interface is based on the measurement of capacitance of the array of plates which varies with the dielectric constant of the liquid within the tank. The measured capacitance has been obtained in nano farad range. Since the sensor is non contact type, it can be used for both conducting and non conducting type of liquid contained within a non conducting tank. Experimental results confirm the satisfactory performance of the sensor for liquid interface level measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.