Fatigue can develop during prolonged computer work, particularly in elderly individuals. This study investigated eye movement characteristics in relation to fatigue development. Twenty young and 18 elderly healthy adults were recruited to perform a prolonged functional computer task while their eye movements were recorded. The task lasted 40 minutes involving 240 cycles divided into 12 segments. Each cycle consisted of a sequence involving memorization of a pattern, a washout period, and replication of the pattern using a computer mouse. The participants rated their perceived fatigue after each segment. The mean values of blink duration (BD) and frequency (BF), saccade duration (SCD) and peak velocity (SPV), pupil dilation range (PDR), and fixation duration (FD) along with the task performance based on clicking speed and accuracy, were computed for each task segment. An increased subjective evaluation of fatigue suggested the development of fatigue. BD, BF, and PDR increased whereas SPV and SCD decreased over time in the young and elderly groups. Longer FD, shorter SCD, and lower task performance were observed in the elderly compared with the young group. The present findings provide a viable approach to develop a computational model based on oculometrics to track fatigue development during computer work.
Recent applications of eye tracking for diagnosis, prognosis and follow-up of therapy in age-related neurological or psychological deficits have been reviewed. The review is focused on active aging, neurodegeneration and cognitive impairments. The potential impacts and current limitations of using characterizing features of eye movements and pupillary responses (oculometrics) as objective biomarkers in the context of aging are discussed. A closer look into the findings, especially with respect to cognitive impairments, suggests that eye tracking is an invaluable technique to study hidden aspects of aging that have not been revealed using any other noninvasive tool. Future research should involve a wider variety of oculometrics, in addition to saccadic metrics and pupillary responses, including nonlinear and combinatorial features as well as blink- and fixation-related metrics to develop biomarkers to trace age-related irregularities associated with cognitive and neural deficits.
A biofeedback system may objectively identify fatigue and provide an individualized timing plan for micro-breaks. We developed and implemented a biofeedback system based on oculometrics using continuous recordings of eye movements and pupil dilations to moderate fatigue development in its early stages. Twenty healthy young participants (10 males and 10 females) performed a cyclic computer task for 31–35 min over two sessions: 1) self-triggered micro-breaks (manual sessions), and 2) biofeedback-triggered micro-breaks (automatic sessions). The sessions were held with one-week inter-session interval and in a counterbalanced order across participants. Each session involved 180 cycles of the computer task and after each 20 cycles (a segment), the task paused for 5-s to acquire perceived fatigue using Karolinska Sleepiness Scale (KSS). Following the pause, a 25-s micro-break involving seated exercises was carried out whether it was triggered by the biofeedback system following the detection of fatigue (KSS≥5) in the automatic sessions or by the participants in the manual sessions. National Aeronautics and Space Administration Task Load Index (NASA-TLX) was administered after sessions. The functioning core of the biofeedback system was based on a Decision Tree Ensemble model for fatigue classification, which was developed using an oculometrics dataset previously collected during the same computer task. The biofeedback system identified fatigue with a mean accuracy of approx. 70%. Perceived workload obtained from NASA-TLX was significantly lower in the automatic sessions compared with the manual sessions, p = 0.01 Cohen’s d z = 0.89. The results give support to the effectiveness of integrating oculometrics-based biofeedback in timing plan of micro-breaks to impede fatigue development during computer work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.