Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce-in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers-and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.fisheries bycatch | trophic downgrading | longlines | gillnets | trawls
Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures -climate change, nutrient loading, and fishing -using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.
Fishers, scientists, and resource managers have made substantial progress in reducing bycatch of sea turtles, seabirds, and marine mammals through physical modifications to fishing gear. Many bycatch-avoidance measures have been developed and tested successfully in controlled experiments, which have led to regulated implementation of modified or new fishing gear. Nevertheless, successful bycatch experiments may not translate to effective mitigation in commercial fisheries because experimental conditions are relaxed in commercial fishing operations. Such a difference between experimental results and real-world results with fishing fleets may have serious consequences for management and conservation of protected species taken as bycatch. We evaluated preimplementation experimental measures and postimplementation efficacy from primary and gray literature for three case studies: acoustic pingers that warn marine mammals of the presence of gill nets, turtle excluder devices that reduce bycatch of turtles in trawls, and various measures to reduce seabird bycatch in longlines. Three common themes to successful implementation of bycatch reduction measures are long-standing collaborations among the fishing industry, scientists, and resource managers; pre- and postimplementation monitoring; and compliance via enforcement and incentives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.