Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography–mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)‐ephedrine and 1R,2S(−)‐ephedrine) and pseudoephedrine (ie, R,R(−)‐pseudoephedrine and S,S(+)‐pseudoephedrine) by using normal phase chiral liquid chromatography–high‐resolution mass spectrometry technique. Results show that the Lux i‐amylose‐1 stationary phase has very broad and balancing‐enantio‐recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio‐separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.
Rationale
According to previous research, aminorex is the major metabolite of levamisole; however, in the screening of levamisole‐positive racehorse urine and plasma samples, aminorex could only be detected in trace amounts or not at all. In forensic laboratories, hydroxy levamisole and its phase II conjugates make it easier to confirm levamisole misuse and to differentiate between the abuse of levamisole and aminorex. This study aimed to identify the major levamisole metabolites that can be detected along with the parent drug.
Methods
The study describes levamisole and its metabolites in thoroughbred horses following oral administration and in vitro with equine liver microsomes. The plausible structures of the detected metabolites were postulated using liquid chromatography combined with high‐resolution mass spectrometry.
Results
Under the experimental conditions 26 metabolites (17 phase I, 2 phase II, and 7 conjugates of phase I metabolites) were detected (M1–M26). The major phase I metabolites identified were formed by hydroxylation. In phase II, the glucuronic acid conjugates of levamisole and hydroxy levamisole were detected as the major metabolites. In plasma, the parent drug and major metabolites are detectable for up to eight days, while in urine, they are detectable for up to twenty days. Levamisole levels rapidly increased at 45 min following administration, then declined gradually until detectable levels were reached approximately 8 days after administration, according to a pharmacokinetics study.
Conclusions
A prolonged elimination profile and relatively high concentration of hydroxy metabolites suggest that the detection of hydroxy metabolites is imperative for investigating levamisole doping in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.