The success of poly(ADP-ribose) polymerase–1 (PARP-1) inhibitors (PARPi) to treat cancer relates to their ability to trap PARP-1 at the site of a DNA break. Although different forms of PARPi all target the catalytic center of the enzyme, they have variable abilities to trap PARP-1. We found that several structurally distinct PARPi drive PARP-1 allostery to promote release from a DNA break. Other inhibitors drive allostery to retain PARP-1 on a DNA break. Further, we generated a new PARPi compound, converting an allosteric pro-release compound to a pro-retention compound and increasing its ability to kill cancer cells. These developments are pertinent to clinical applications where PARP-1 trapping is either desirable or undesirable.
Thrombin participates in procoagulation, anticoagulation, and platelet activation. This enzyme contains anion binding exosites, ABE I and ABE II, which attract regulatory biomolecules. As prothrombin is activated to thrombin, pro-ABE I is converted into mature ABE I. Unexpectedly, certain ligands can bind to pro-ABE I specifically. Moreover, knowledge is lacking on changes in conformation and affinity that occur at the individual residue level as pro-ABE I is converted to ABE I. Such changes are transient and failed to be captured by crystallography. Therefore, we employed NMR titrations to monitor development of ABE I using peptides based on Protease Activated Receptor 3 (PAR3). Proton line broadening NMR revealed that PAR3 (44–56) and weaker binding PAR3G (44–56) could already interact with pro-ABE I on prothrombin. 1H-15N Heteronuclear Single Quantum Coherence NMR titrations were then used to probe binding of individual 15N-labeled PAR3G residues (F47, E48, L52, and D54). PAR3G E48 and D54 could interact electrostatically with prothrombin and tightened upon thrombin maturation. The higher affinity for PAR3G D54 suggests the region surrounding thrombin R77a is better oriented to bind D54 than the interaction between PAR3G E48 and thrombin R75. Aromatic PAR3G F47 and aliphatic L52 both reported on significant changes in chemical environment upon conversion of prothrombin to thrombin. The ABE I region surrounding the 30s loop was more affected than the hydrophobic pocket (F34, L65, and I82). Our NMR titrations demonstrate that PAR3 residues document structural rearrangements occurring during exosite maturation that are missed by reported X-ray crystal structures.
PARP1 and PARP2 produce poly(ADP-ribose) in response to DNA breaks. HPF1 regulates PARP1/2 catalytic output, most notably permitting serine modification with ADP-ribose. However, PARP1 is substantially more abundant in cells than HPF1, challenging whether HPF1 can pervasively modulate PARP1. Here, we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates/dissociates from multiple PARP1 molecules, initiating serine modification before modification initiates on glutamate/aspartate, and accelerating initiation to be more comparable to elongation reactions forming poly(ADP-ribose). This “hit and run” mechanism ensures HPF1 contributions to PARP1/2 during initiation do not persist and interfere with PAR chain elongation. We provide structural insights into HPF1/PARP1 assembled on a DNA break, and assess HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of serine-ADP-ribose modification in cells and the efficiency of serine-ADP-ribose modification required for an acute DNA damage response.
The activation peptide of blood coagulation factor XIII (AP-FXIII) has important functions in stabilising the FXIII-A2 dimer and regulating FXIII activation. Contributions of many of its 37 amino acids to these functions have been described. However, the role of proline 36, which is adjacent to the thrombin cleavage site at Arg37, has not yet been studied in detail. We approached this question when we came across a patient with congenital FXIII deficiency in whom we detected a novel Pro36Ser mutation. We expressed the mutant FXIII-A Pro36Ser protein in CHO cells and found that this mutation does not influence FXIII-A expression but significantly inhibits proteolytic activation by thrombin. The enzymatic transglutaminase activity is not affected as it can be induced in the presence of high Ca2+ concentrations. We performed Nuclear Magnetic Resonance (NMR) analysis to investigate AP-FXIII-thrombin interactions, which showed that the mutant Ser36 peptide binds less well to the thrombin surface than the native Pro36 peptide. The Arg37 at the P1 position still makes strong interactions with the active site cleft but the P4-P2 residues (34VVS36) appear to be less well positioned to contact the neighbouring thrombin active site region. In conclusion, we have characterised a novel mutation in AP-FXIII representing only the fourth case of the rare FXIII-A type II deficiency. This case served as a perfect in vivo model to shed light on the crucial role of Pro36 in the proteolytic activation of FXIII-A. Our results contribute to the understanding of structure-function relationship in FXIII.
Thrombin, derived from zymogen prothrombin (ProT), is a serine protease involved in procoagulation, anticoagulation, and platelet activation. Thrombin's actions are regulated through Anion Binding Exosites I and II (ABE I and ABE II) that undergo maturation during activation. Mature ABEs can utilize exosite-based communication to fulfill thrombin functions. However, the conformational basis behind such long-range communication and the resultant ligand binding affinities are not well understood. Protease Activated Receptors (PARs), involved in platelet activation and aggregation, are known to target thrombin ABE I. Unexpectedly, PAR3 (44-56) can already bind to pro-ABE I of ProT. Nuclear Magnetic Resonance (NMR) ligand-enzyme titrations were used to characterize how individual PAR1 (49-62) residues interact with pro-ABE I and mature ABE I. 1D proton line broadening studies demonstrated that binding affinities for native PAR1P (49-62, P54) and for the weak binding variant PAR1G (49-62, P54G) increased as ProT was converted to mature thrombin. 1 H, 15 N-HSQC titrations revealed that PAR1G residues K51, E53, F55, D58, and E60 exhibited less affinity to pro-ABE I than comparable residues in PAR3G (44-56, P51G). Individual PAR1G residues then displayed tighter binding upon exosite maturation. Long range communication between thrombin exosites was examined by saturating ABE II with phosphorylated GpIbα (269-282, 3Yp) and monitoring binding of PAR1 and PAR3 peptides to ABE I. Individual PAR residues exhibited increased affinities in this dual ligand environment supporting the presence of inter-exosite allostery. Exosite maturation and beneficial long range allostery are proposed to help stabilize an ABE I conformation that can effectively bind PAR ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.