In vitro experimental evolution of pathogens to antibiotics is commonly used for the identification of clinical biomarkers associated with antibiotic resistance. Microdroplet emulsions allow exquisite control of spatial structure, species complexity, and selection microenvironments for such studies. We investigated the use of monodisperse microdroplets in experimental evolution. Using Escherichia coli adaptation to doxycycline, we examined how changes in environmental conditions such as droplet size, starting lambda value, selection strength, and incubation method affected evolutionary outcomes. We also examined the extent to which emulsions could reveal potentially new evolutionary trajectories and dynamics associated with antimicrobial resistance. Interestingly, we identified both expected and unexpected evolutionary trajectories including large-scale chromosomal rearrangements and amplification that were not observed in suspension culture methods. As microdroplet emulsions are well-suited for automation and provide exceptional control of conditions, they can provide a high-throughput approach for biomarker identification as well as preclinical evaluation of lead compounds.
Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was composed of three strains: a “Producer” that makes the diffusible quorum sensing molecule (N-(3-oxododecanoyl)-l-homoserine lactone, C12-oxo-HSL) or AHL; a “Receiver” that is killed by AHL; and a Non-Producer or “cheater” that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allows a more efficient but transient enrichment of more rare and slower-growing Producer subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.
Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was comprised of three strains: a Producer that makes the diffusible quorum sensing molecule (N-(3-Oxododecanoyl)-L-homoserine lactone, C12-oxo-HSL) or AHL; a Receiver that is killed by AHL and a Non-Producer or cheater that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allow a more efficient but transient enrichment of more rare and slower growing Producer subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.
The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant non-linear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative non-optical detection approach suitable for microdroplets. In this study, an MHT-labeledStreptomyces venezuelaereporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle forS. venezuelaeincluding the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) fromS. venezuelaegas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100-1000 fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.