The ability of cells to detect and repair DNA double-strand breaks (DSBs) within the complex architecture of the genome requires co-ordination between the DNA repair machinery and chromatin remodelling complexes. This co-ordination is essential to process damaged chromatin and create open chromatin structures which are required for repair. Initially, there is a PARP-dependent recruitment of repressors, including HP1 and several H3K9 methyltransferases, and exchange of histone H2A.Z by the NuA4-Tip60 complex. This creates repressive chromatin at the DSB in which the tail of histone H4 is bound to the acidic patch on the nucleosome surface. These repressor complexes are then removed, allowing rapid acetylation of the H4 tail by Tip60. H4 acetylation blocks interaction between the H4 tail and the acidic patch on adjacent nucleosomes, decreasing inter-nucleosomal interactions and creating open chromatin. Further, the H4 tail is now free to recruit proteins such as 53BP1 to DSBs, a process modulated by H4 acetylation, and provides binding sites for bromodomain proteins, including ZMYND8 and BRD4, which are important for DSB repair. Here, we will discuss how the H4 tail functions as a dynamic hub that can be programmed through acetylation to alter chromatin packing and recruit repair proteins to the break site.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural similarity at the predicted active site with the known members of the GH16 family, with the closest match to the endoglucanase subfamily. The method discussed herein can predict whether an SG protein is correctly or incorrectly annotated and can sometimes provide a reliable functional annotation. Examples of application of the method across folds, comparing active sites between two proteins of different structural folds, are also given.
DinB is one of two Y family polymerases in E. coli and is involved in copying damaged DNA. DinB is specialized to bypass deoxyguanosine adducts that occur at the N 2 position, with its cognate lesion being the furfuryl adduct. Active site residues have been identified that make contact with the substrate and carry out deoxynucleotide triphosphate (dNTP) addition to the growing DNA strand. In DNA polymerases, these include negatively charged aspartate and glutamate residues (D8, D103, and E104 in E. coli DNA polymerase IV DinB). These residues position the essential magnesium ions correctly to facilitate nucleophilic attack by the primer hydroxyl group on the a-phosphate group of the incoming dNTP. To study the contribution of DinB residues to lesion bypass, the computational methods THEMATICS and POOL were employed. These methods correctly predict the known active site residues, as well as other residues known to be important for activity. In addition, these methods predict other residues involved in substrate binding as well as more remote residues. DinB variants with mutations at the predicted positions were constructed and assayed for bypass of the N 2 -furfuryl-dG lesion. We find a wide range of effects of predicted residues, including some mutations that abolish damage bypass. Moreover, most of the DinB variants constructed are unable to carry out the extension step of lesion bypass. The use of computational prediction methods represents another tool that will lead to a more complete understanding of translesion DNA synthesis. Environ. Mol. Mutagen. 53:766-776, 2012. V V C 2012 Wiley Periodicals, Inc.
A new approach to the functional classification of protein 3D structures is described with application to some examples from structural genomics. This approach is based on functional site prediction with THEMATICS and POOL. THEMATICS employs calculated electrostatic potentials of the query structure. POOL is a machine learning method that utilizes THEMATICS features and has been shown to predict accurate, precise, highly localized interaction sites. Extension to the functional classification of structural genomics proteins is now described. Predicted functionally important residues are structurally aligned with those of proteins with previously characterized biochemical functions. A 3D structure match at the predicted local functional site then serves as a more reliable predictor of biochemical function than an overall structure match. Annotation is confirmed for a structural genomics protein with the ribulose phosphate binding barrel (RPBB) fold. A putative glucoamylase from Bacteroides fragilis (PDB ID 3eu8) is shown to be in fact probably not a glucoamylase. Finally a structural genomics protein from Streptomyces coelicolor annotated as an enoyl-CoA hydratase (PDB ID 3g64) is shown to be misannotated. Its predicted active site does not match the well-characterized enoyl-CoA hydratases of similar structure but rather bears closer resemblance to those of a dehalogenase with similar fold.
BackgroundThe prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA), for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site.ResultsImplementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw) from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC), is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l), a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w), Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t) has been reported to be an enoyl-CoA hydratase (ECH), but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH), a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s). This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase.ConclusionsA local site match provides a more compelling function prediction than that obtainable from a simple 3D structure match. The present method can confirm putative annotations, identify misannotation, and in some cases suggest a more probable annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.