Cucurbiturils are a family of molecular container compounds with superior molecular recognition properties. The use of cucurbiturils for supramolecular catalysis is highlighted in this concept. Both photochemical reactions as well as thermal transformations are reviewed with an eye towards tailoring substrates for supramolecular catalysis mediated by cucurbiturils.
Renewable polymeric materials derived from biomass with built-in phototriggers were synthesized and evaluated for degradation under irradiation of UV light. Complete decomposition of the polymeric materials was observed with recovery of the monomer that was used to resynthesize the polymers.
Atropisomeric maleimides were synthesized and employed for stereospecific [2 + 2] photocycloaddition. Efficient reaction was observed under direct irradiation, triplet-sensitized UV irradiation, and non-metal catalyzed visible-light irradiation, leading to two regioisomeric (exo/endo) photoproducts with complete chemoselectivity (exclusive [2 + 2] photoproduct). High enantioselectivity (ee > 98%) and diastereoselectivity (dr > 99:1%) were observed under the employed reaction conditions and were largely dependent on the substituent on the maleimide double bond but minimally affected by the substituents on the alkenyl tether. On the basis of detailed photophysical studies, the triplet energies of the maleimides were estimated. The triplet lifetimes appeared to be relatively short at room temperature as a result of fast [2 + 2] photocycloaddition. For the visible-light mediated reaction, triplet energy transfer occurred with a rate constant close to the diffusion-limited value. The mechanism was established by generation of singlet oxygen from the excited maleimides. The high selectivity in the photoproduct upon reaction from the triplet excited state was rationalized on the basis of conformational factors as well as the type of diradical intermediate that was preferred during the photoreaction.
A complementary strategy of utilizing ππ* excited state of alkene instead of nπ* excited state of the carbonyl chromophore in a "transposed Paternò-Büchi" reaction is evaluated with atropisomeric enamides as the model system. Based on photophysical investigations, the nature of excited states and the reactive pathway was deciphered leading to atropselective reaction. This new concept of switching of excited-state configuration should pave the way to control the stereochemical course of photoreaction due to the orbital approaches required for photochemical reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.