Although placodes are ubiquitous precursors of tissue invagination, the mechanism of placode formation has not been established and the requirement of placode formation for subsequent invagination has not been tested. Earlier measurements in chicken embryos supported the view that lens placode formation occurs because the extracellular matrix (ECM) between the optic vesicle and the surface ectoderm prevents the prospective lens cells from spreading. Continued cell proliferation within this restricted area was proposed to cause cell crowding, leading to cell elongation (placode formation). This view suggested that continued cell proliferation and adhesion to the ECM between the optic vesicle and the surface ectoderm was sufficient to explain lens placode formation. To test the predictions of this “restricted expansion hypothesis,” we first confirmed that the cellular events that accompany lens placode formation in chicken embryos also occur in mouse embryos. We then showed that the failure of lens placode formation when the transcription factor, Pax6 was conditionally deleted in the surface ectoderm was associated with greatly diminished accumulation of ECM between the optic vesicle and ectoderm and reduced levels of transcripts encoding components of the ECM. In accord with the “restricted expansion hypothesis,” the Pax6-deleted ectoderm expanded, rather than being constrained to a constant area. As a further test, we disrupted the ECM by deleting Fn1, which is required for matrix assembly and cell-matrix adhesion. As in Pax6CKO embryos, the Fn1CKO lens ectoderm expanded, rather than being constrained to a fixed area and the lens placode did not form. Ectoderm cells in Fn1CKO embryos expressed markers of lens induction and reorganized their cytoskeleton as in wild type ectoderm, but did not invaginate, suggesting that placode formation establishes the minimal mechanical requirements for invagination.
Intraocular oxygen is mostly derived from the retinal and iris vasculature and by diffusion across the cornea. Freshly secreted aqueous humor and the aqueous humor in the anterior chamber angle are relatively depleted of oxygen. The marked increase in oxygen consumption that occurs when the lens is exposed to increased oxygen is likely to result in the production of higher levels of reactive oxygen species and may provide a link between elevated oxygen levels and the risk of nuclear cataracts.
BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, αA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination.
There are conflicting reports about whether BMP signaling is required for eyelid closure during fetal development. This question was addressed using mice deficient in BMP or TGFβ signaling in prospective eyelid and conjunctival epithelial cells. Genes encoding two type I BMP receptors, the type II TGFβ receptor, two BMP-or two TGFβ-activated R-Smads or the co-Smad Smad4 were deleted from the ocular surface ectoderm using Cre recombinase. Only mice with deletion of components of the BMP pathway had an 'eyelid open at birth' phenotype. Mice lacking Fgf10 or Fgfr2 also have open eyelids at birth. To better understand the pathways that regulate BMP expression and function during eyelid development, we localized BMPs and BMP signaling intermediates in Fgfr2 and Smad4 conditional knockout (CKO) mice. We found that Fgfr2 was required for the expression of Bmp4, the normal distribution of Shh signaling and for preserving the differentiation of the conjunctival epithelium. FGF signaling also promoted the expression of the Wnt antagonist Sfrp1 and suppressed Wnt signaling in the prospective eyelid epithelial cells, independently of BMP function. Transcripts encoding Foxc1 and Foxc2, which were previously shown to be necessary for eyelid closure, were not detectable in Smad4 CKO animals. c-Jun, another key regulator of eyelid closure, was present and phosphorylated in eyelid periderm cells at the time of fusion, but failed to translocate to the nucleus in the absence of BMP function. Smad4 CKO mice also showed premature differentiation of the conjunctival epithelium, conjunctival hyperplasia and the acquisition of epidermal characteristics, including formation of an ectopic row of hair follicles in place of the Meibomian glands. A second row of eyelashes is a feature of human lymphedema-distichiasis syndrome, which is associated with mutations in FOXC2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.